First Author | Tan RM | Year | 2015 |
Journal | Infect Immun | Volume | 83 |
Issue | 4 | Pages | 1339-46 |
PubMed ID | 25605768 | Mgi Jnum | J:229280 |
Mgi Id | MGI:5751372 | Doi | 10.1128/IAI.02874-14 |
Citation | Tan RM, et al. (2015) Type IV pilus glycosylation mediates resistance of Pseudomonas aeruginosa to opsonic activities of the pulmonary surfactant protein A. Infect Immun 83(4):1339-46 |
abstractText | Pseudomonas aeruginosa is a major bacterial pathogen commonly associated with chronic lung infections in cystic fibrosis (CF). Previously, we have demonstrated that the type IV pilus (Tfp) of P. aeruginosa mediates resistance to antibacterial effects of pulmonary surfactant protein A (SP-A). Interestingly, P. aeruginosa strains with group I pilins are O-glycosylated through the TfpO glycosyltransferase with a single subunit of O-antigen (O-ag). Importantly, TfpO-mediated O-glycosylation is important for virulence in mouse lungs, exemplified by more frequent lung infection in CF with TfpO-expressing P. aeruginosa strains. However, the mechanism underlying the importance of Tfp glycosylation in P. aeruginosa pathogenesis is not fully understood. Here, we demonstrated one mechanism of increased fitness mediated by O-glycosylation of group 1 pilins on Tfp in the P. aeruginosa clinical isolate 1244. Using an acute pneumonia model in SP-A+/+ versus SP-A-/- mice, the O-glycosylation-deficient DeltatfpO mutant was found to be attenuated in lung infection. Both 1244 and DeltatfpO strains showed equal levels of susceptibility to SP-A-mediated membrane permeability. In contrast, the DeltatfpO mutant was more susceptible to opsonization by SP-A and by other pulmonary and circulating opsonins, SP-D and mannose binding lectin 2, respectively. Importantly, the increased susceptibility to phagocytosis was abrogated in the absence of opsonins. These results indicate that O-glycosylation of Tfp with O-ag specifically confers resistance to opsonization during host-mediated phagocytosis. |