|  Help  |  About  |  Contact Us

Publication : Sensation, movement and learning in the absence of barrel cortex.

First Author  Hong YK Year  2018
Journal  Nature Volume  561
Issue  7724 Pages  542-546
PubMed ID  30224746 Mgi Jnum  J:266920
Mgi Id  MGI:6200491 Doi  10.1038/s41586-018-0527-y
Citation  Hong YK, et al. (2018) Sensation, movement and learning in the absence of barrel cortex. Nature 561(7724):542-546
abstractText  For many of our senses, the role of the cerebral cortex in detecting stimuli is controversial(1-17). Here we examine the effects of both acute and chronic inactivation of the primary somatosensory cortex in mice trained to move their large facial whiskers to detect an object by touch and respond with a lever to obtain a water reward. Using transgenic mice, we expressed inhibitory opsins in excitatory cortical neurons. Transient optogenetic inactivation of the primary somatosensory cortex, as well as permanent lesions, initially produced both movement and sensory deficits that impaired detection behaviour, demonstrating the link between sensory and motor systems during active sensing. Unexpectedly, lesioned mice had recovered full behavioural capabilities by the subsequent session. This rapid recovery was experience-dependent, and early re-exposure to the task after lesioning facilitated recovery. Furthermore, ablation of the primary somatosensory cortex before learning did not affect task acquisition. This combined optogenetic and lesion approach suggests that manipulations of the sensory cortex may be only temporarily disruptive to other brain structures that are themselves capable of coordinating multiple, arbitrary movements with sensation. Thus, the somatosensory cortex may be dispensable for active detection of objects in the environment.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

12 Bio Entities

0 Expression