|  Help  |  About  |  Contact Us

Publication : Fine mapping, gene content, comparative sequencing, and expression analyses support Ctla4 and Nramp1 as candidates for Idd5.1 and Idd5.2 in the nonobese diabetic mouse.

First Author  Wicker LS Year  2004
Journal  J Immunol Volume  173
Issue  1 Pages  164-73
PubMed ID  15210771 Mgi Jnum  J:90924
Mgi Id  MGI:3045524 Doi  10.4049/jimmunol.173.1.164
Citation  Wicker LS, et al. (2004) Fine mapping, gene content, comparative sequencing, and expression analyses support Ctla4 and Nramp1 as candidates for Idd5.1 and Idd5.2 in the nonobese diabetic mouse. J Immunol 173(1):164-73
abstractText  At least two loci that determine susceptibility to type 1 diabetes in the NOD mouse have been mapped to chromosome 1, Idd5.1 (insulin-dependent diabetes 5.1) and Idd5.2. In this study, using a series of novel NOD.B10 congenic strains, Idd5.1 has been defined to a 2.1-Mb region containing only four genes, Ctla4, Icos, Als2cr19, and Nrp2 (neuropilin-2), thereby excluding a major candidate gene, Cd28. Genomic sequence comparison of the two functional candidate genes, Ctla4 and Icos, from the B6 (resistant at Idd5.1) and the NOD (susceptible at Idd5.1) strains revealed 62 single nucleotide polymorphisms (SNPs), only two of which were in coding regions. One of these coding SNPs, base 77 of Ctla4 exon 2, is a synonymous SNP and has been correlated previously with type 1 diabetes susceptibility and differential expression of a CTLA-4 isoform. Additional expression studies in this work support the hypothesis that this SNP in exon 2 is the genetic variation causing the biological effects of Idd5.1. Analysis of additional congenic strains has also localized Idd5.2 to a small region (1.52 Mb) of chromosome 1, but in contrast to the Idd5.1 interval, Idd5.2 contains at least 45 genes. Notably, the Idd5.2 region still includes the functionally polymorphic Nramp1 gene. Future experiments to test the identity of Idd5.1 and Idd5.2 as Ctla4 and Nramp1, respectively, can now be justified using approaches to specifically alter or mimic the candidate causative SNPs.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

19 Bio Entities

0 Expression