First Author | White RE | Year | 2011 |
Journal | J Neurosci | Volume | 31 |
Issue | 42 | Pages | 15173-87 |
PubMed ID | 22016551 | Mgi Jnum | J:352206 |
Mgi Id | MGI:6765015 | Doi | 10.1523/JNEUROSCI.3441-11.2011 |
Citation | White RE, et al. (2011) Transforming growth factor alpha transforms astrocytes to a growth-supportive phenotype after spinal cord injury. J Neurosci 31(42):15173-87 |
abstractText | Astrocytes are both detrimental and beneficial for repair and recovery after spinal cord injury (SCI). These dynamic cells are primary contributors to the growth-inhibitory glial scar, yet they are also neuroprotective and can form growth-supportive bridges on which axons traverse. We have shown that intrathecal administration of transforming growth factor alpha (TGFalpha) to the contused mouse spinal cord can enhance astrocyte infiltration and axonal growth within the injury site, but the mechanisms of these effects are not well understood. The present studies demonstrate that the epidermal growth factor receptor (EGFR) is upregulated primarily by astrocytes and glial progenitors early after SCI. TGFalpha directly activates the EGFR on these cells in vitro, inducing their proliferation, migration, and transformation to a phenotype that supports robust neurite outgrowth. Overexpression of TGFalpha in vivo by intraparenchymal adeno-associated virus injection adjacent to the injury site enhances cell proliferation, alters astrocyte distribution, and facilitates increased axonal penetration at the rostral lesion border. To determine whether endogenous EGFR activation is required after injury, SCI was also performed on Velvet (C57BL/6J-Egfr(Vel)/J) mice, a mutant strain with defective EGFR activity. The affected mice exhibited malformed glial borders, larger lesions, and impaired recovery of function, indicating that intrinsic EGFR activation is necessary for neuroprotection and normal glial scar formation after SCI. By further stimulating precursor proliferation and modifying glial activation to promote a growth-permissive environment, controlled stimulation of EGFR at the lesion border may be considered in the context of future strategies to enhance endogenous cellular repair after injury. |