| First Author | Peter PS | Year | 2007 |
| Journal | J Clin Invest | Volume | 117 |
| Issue | 5 | Pages | 1335-43 |
| PubMed ID | 17446930 | Mgi Jnum | J:122039 |
| Mgi Id | MGI:3713021 | Doi | 10.1172/JCI29576 |
| Citation | Peter PS, et al. (2007) Inhibition of p38 alpha MAPK rescues cardiomyopathy induced by overexpressed beta 2-adrenergic receptor, but not beta 1-adrenergic receptor. J Clin Invest 117(5):1335-43 |
| abstractText | We examined the role of p38alpha MAPK in mediating cardiomyopathy in mice overexpressing beta(1)-adrenergic receptor (beta(1)-AR) or beta(2)-AR by mating them with dominant-negative p38alpha (DNp38alpha) MAPK mice. Both beta(1)-AR and beta(2)-AR Tg mice had enhanced LV ejection fraction (LVEF) as young adults and developed similar cardiomyopathy at 11-15 months, characterized by reduced LVEF, myocyte hypertrophy, fibrosis, and apoptosis. We inhibited p38alpha MAPK by mating beta(1)-AR Tg and beta(2)-AR Tg mice with DNp38alpha MAPK mice, which rescued the depressed LVEF and reduced apoptosis and fibrosis in bigenic beta(2)-AR x DNp38alpha MAPK mice, but not bigenic beta(1)-AR x DNp38alpha MAPK mice, and failed to reduce myocyte hypertrophy in either group. G(salpha) was increased in both beta(1)-AR Tg and beta(2)-AR Tg mice and was still present in bigenic beta(1)-AR x DNp38alpha MAPK mice, but not bigenic beta(2)-AR x DNp38alpha MAPK mice. This suggests that p38alpha MAPK is one critical downstream signal for the development of cardiomyopathy following chronic beta(2)-AR stimulation, but other kinases may be more important in ameliorating the adverse effects of chronic beta(1)-AR stimulation. |