|  Help  |  About  |  Contact Us

Publication : Quantitative trait loci analysis for the differences in susceptibility to atherosclerosis and diabetes between inbred mouse strains C57BL/6J and C57BLKS/J.

First Author  Mu JL Year  1999
Journal  J Lipid Res Volume  40
Issue  7 Pages  1328-35
PubMed ID  10393218 Mgi Jnum  J:56090
Mgi Id  MGI:1340080 Citation  Mu JL, et al. (1999) Quantitative trait loci analysis for the differences in susceptibility to atherosclerosis and diabetes between inbred mouse strains C57BL/6J and C57BLKS/J. J Lipid Res 40(7):1328-35
abstractText  Mice from the inbred strain C57BLKS/J (BKS) exhibit increased susceptibility to both diabetes and atherosclerosis compared to C57BL/6J (B6) mice. To determine whether the differences in diabetes and atherosclerosis are related, we carried out a cross between B6-db/db and BKS. We selected 99 female F2-db/db progeny, tested the progeny for plasma lipids, plasma glucose, and fatty-streak lesions, and used quantitative trait loci (QTL) analysis to identify the chromosomal regions associated with these phenotypes. No major QTL were found for total cholesterol, VLDL-cholesterol, or triglycerides. Two suggestive QTL were found for HDL-cholesterol (LOD scores of 2. 7 and 2.8), and two suggestive loci were found for plasma glucose (LOD scores of 2.3 and 2.0). Lesion size was not correlated with plasma lipid levels or glucose. Lesion size was determined by a locus at D12Mit49 with a LOD score of 2.5 and a significant likelihood ratio statistic. The gene for apolipoprotein apoB lies within the region, but apoB levels were similar in strains B6 and BKS. The QTL on Chr 12 was confirmed by constructing a congenic strain with BKS alleles in the QTL region on a B6 genetic background. We conclude that susceptibilities to diabetes and atherosclerosis are not conferred by the same genes in these strains and that a major gene on Chr 12, which we name Ath6, determines the difference in atherosclerosis susceptibility.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

29 Bio Entities

0 Expression