|  Help  |  About  |  Contact Us

Publication : Lack of microsomal prostaglandin E(2) synthase-1 in bone marrow-derived myeloid cells impairs left ventricular function and increases mortality after acute myocardial infarction.

First Author  Degousee N Year  2012
Journal  Circulation Volume  125
Issue  23 Pages  2904-13
PubMed ID  22589381 Mgi Jnum  J:198608
Mgi Id  MGI:5498450 Doi  10.1161/CIRCULATIONAHA.112.099754
Citation  Degousee N, et al. (2012) Lack of microsomal prostaglandin E(2) synthase-1 in bone marrow-derived myeloid cells impairs left ventricular function and increases mortality after acute myocardial infarction. Circulation 125(23):2904-13
abstractText  BACKGROUND: Microsomal prostaglandin E(2) synthase-1 (mPGES-1), encoded by the Ptges gene, catalyzes prostaglandin E(2) biosynthesis and is expressed by leukocytes, cardiac myocytes, and cardiac fibroblasts. Ptges(-/-) mice develop more left ventricle (LV) dilation, worse LV contractile function, and higher LV end-diastolic pressure than Ptges(+/+) mice after myocardial infarction. In this study, we define the role of mPGES-1 in bone marrow-derived leukocytes in the recovery of LV function after coronary ligation. METHODS AND RESULTS: Cardiac structure and function in Ptges(+/+) mice with Ptges(+/+) bone marrow (BM(+/+)) and Ptges(+/+) mice with Ptges(-/-) BM (BM(-/-)) were assessed by morphometric analysis, echocardiography, and invasive hemodynamics before and 7 and 28 days after myocardial infarction. Prostaglandin levels and prostaglandin biosynthetic enzyme gene expression were measured by liquid chromatography-tandem mass spectrometry and real-time polymerase chain reaction, immunoblotting, immunohistochemistry, and immunofluorescence microscopy, respectively. After myocardial infarction, BM(-/-) mice had more LV dilation, worse LV systolic and diastolic function, higher LV end-diastolic pressure, more cardiomyocyte hypertrophy, and higher mortality but similar infarct size and pulmonary edema compared with BM(+/+) mice. BM(-/-) mice also had higher levels of COX-1 protein and more leukocytes in the infarct, but not the viable LV, than BM(+/+) mice. Levels of prostaglandin E(2) were higher in the infarct and viable myocardium of BM(-/-) mice than in BM(+/+) mice. CONCLUSIONS: Lack of mPGES-1 in bone marrow-derived leukocytes negatively regulates COX-1 expression, prostaglandin E(2) biosynthesis, and inflammation in the infarct and leads to impaired LV function, adverse LV remodeling, and decreased survival after acute myocardial infarction.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

3 Bio Entities

0 Expression