First Author | Xue J | Year | 2020 |
Journal | Clin Sci (Lond) | Volume | 134 |
Issue | 8 | Pages | 941-953 |
PubMed ID | 32227118 | Mgi Jnum | J:292460 |
Mgi Id | MGI:6448816 | Doi | 10.1042/CS20200065 |
Citation | Xue J, et al. (2020) An inducible intestinal epithelial cell-specific NHE3 knockout mouse model mimicking congenital sodium diarrhea. Clin Sci (Lond) 134(8):941-953 |
abstractText | The sodium-hydrogen exchanger isoform 3 (NHE3, SLC9A3) is abundantly expressed in the gastrointestinal tract and is proposed to play essential roles in Na+ and fluid absorption as well as acid-base homeostasis. Mutations in the SLC9A3 gene can cause congenital sodium diarrhea (CSD). However, understanding the precise role of intestinal NHE3 has been severely hampered due to the lack of a suitable animal model. To navigate this problem and better understand the role of intestinal NHE3, we generated a tamoxifen-inducible intestinal epithelial cell-specific NHE3 knockout mouse model (NHE3IEC-KO). Before tamoxifen administration, the phenotype and blood parameters of NHE3IEC-KO were unremarkable compared with control mice. After tamoxifen administration, NHE3IEC-KO mice have undetectable levels of NHE3 in the intestine. NHE3IEC-KO mice develop watery, alkaline diarrhea in combination with a swollen small intestine, cecum and colon. The persistent diarrhea results in higher fluid intake. After 3 weeks, NHE3IEC-KO mice show a approximately 25% mortality rate. The contribution of intestinal NHE3 to acid-base and Na+ homeostasis under normal conditions becomes evident in NHE3IEC-KO mice that have metabolic acidosis, lower blood bicarbonate levels, hyponatremia and hyperkalemia associated with drastically elevated plasma aldosterone levels. These results demonstrate that intestinal NHE3 has a significant contribution to acid-base, Na+ and volume homeostasis, and lack of intestinal NHE3 has consequences on intestinal structural integrity. This mouse model mimics and explains the phenotype of individuals with CSD carrying SLC9A3 mutations. |