|  Help  |  About  |  Contact Us

Publication : A minor population of splenic dendritic cells expressing CD19 mediates IDO-dependent T cell suppression via type I IFN signaling following B7 ligation.

First Author  Baban B Year  2005
Journal  Int Immunol Volume  17
Issue  7 Pages  909-19
PubMed ID  15967784 Mgi Jnum  J:99971
Mgi Id  MGI:3584312 Doi  10.1093/intimm/dxh271
Citation  Baban B, et al. (2005) A minor population of splenic dendritic cells expressing CD19 mediates IDO-dependent T cell suppression via type I IFN signaling following B7 ligation. Int Immunol 17(7):909-19
abstractText  By ligating CD80/CD86 (B7) molecules, the synthetic immunomodulatory reagent CTLA4-Ig (soluble synthetic CTLA4 fusion protein) induces expression of the enzyme indoleamine 2,3-dioxygenase (IDO) in some dendritic cells (DCs), which acquire potent T cell regulatory functions as a consequence. Here we show that this response occurred exclusively in a population of splenic DCs co-expressing the marker CD19. B7 ligation induced activation of the transcription factor signal transducer and activator of transcription (STAT1) in sorted CD19+, but not CD19(NEG), DCs. STAT1 activation occurred even when DCs lacked receptors for type II IFN (IFNgamma); however, STAT1 activation and IDO up-regulation were not observed when DCs lacked receptors for type I IFN (IFNalphabeta). Thus, IFNalpha, but not IFNgamma, signaling was essential for STAT1 activation and IDO up-regulation in CD19+ DCs following B7 ligation. Consistent with these findings, B7 ligation also induced sorted CD19+, but not CD19(NEG), DCs to express IFNalpha. Moreover, recombinant IFNalpha induced CD19+, but not CD19(NEG), DCs to mediate IDO-dependent T cell suppression, showing that IFNalpha signaling could substitute for upstream signals from B7. These data reveal that a minor population of splenic DCs expressing the CD19 marker is uniquely responsive to B7 ligation, and that IFNalpha-mediated STAT1 activation is an essential intermediary signaling pathway that promotes IDO induction in these DCs. Thus, CD19+ DCs may be a target for regulatory T cells expressing surface CTLA4, and may suppress T cell responses via induction of IDO.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

4 Bio Entities

0 Expression