|  Help  |  About  |  Contact Us

Publication : Targeting reverse tetracycline-dependent transactivator to murine mammary epithelial cells that express the progesterone receptor.

First Author  Mukherjee A Year  2007
Journal  Genesis Volume  45
Issue  10 Pages  639-46
PubMed ID  17941046 Mgi Jnum  J:128735
Mgi Id  MGI:3767921 Doi  10.1002/dvg.20336
Citation  Mukherjee A, et al. (2007) Targeting reverse tetracycline-dependent transactivator to murine mammary epithelial cells that express the progesterone receptor. Genesis 45(10):639-46
abstractText  Through an established gene-targeting strategy, reverse tetracycline-dependent transactivator (rtTA) was targeted downstream of the murine progesterone receptor (PR) promoter. Mice were generated in which one (PR(+/rtTA)) or both (PR(rtTA/rtTA)) PR alleles harbor the rtTA insertion. The PR(+/rtTA) and PR(rtTA/rtTA) knockins exhibit phenotypes identical to the normal and the progesterone receptor knockout mouse, respectively. Crossed with the TZA reporter, which carries the TetO-LacZ responder transgene, the PR(+/rtTA)/TZA and PR(rtTA/rtTA)/TZA bigenics exhibit doxycycline-induced beta-galactosidase activity specifically in progesterone responsive target tissues such as the mammary gland, uterus, ovary, and pituitary gland. In the case of the PR(+/rtTA)/TZA mammary epithelium, dual immunofluorescence demonstrated that PR expression and doxycycline-induced beta-galactosidase activity colocalized; beta-galactosidase was not detected in the absence of doxycycline. Although both the PR(+/rtTA) and PR(rtTA/rtTA) knockins represent innovative animal models with which to further query progesterone's mechanism of action in vivo, the PR(rtTA/rtTA) mouse in particular promises to provide unique insight into the paracrine mechanism of action, which underpins progesterone's involvement in mammary morphogenesis with obvious implications for extending our understanding of this steroid's role in breast cancer progression.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

7 Bio Entities

0 Expression