First Author | Marcello MR | Year | 2011 |
Journal | J Biol Chem | Volume | 286 |
Issue | 15 | Pages | 13060-70 |
PubMed ID | 21339297 | Mgi Jnum | J:171133 |
Mgi Id | MGI:4948779 | Doi | 10.1074/jbc.M110.175463 |
Citation | Marcello MR, et al. (2011) Lack of Tyrosylprotein Sulfotransferase-2 Activity Results in Altered Sperm-Egg Interactions and Loss of ADAM3 and ADAM6 in Epididymal Sperm. J Biol Chem 286(15):13060-70 |
abstractText | Tyrosine O-sulfation is a post-translational modification catalyzed by two tyrosylprotein sulfotransferases (TPST-1 and TPST-2) in the trans-Golgi network. Tpst2-deficient mice have male infertility, sperm motility defects, and possible abnormalities in sperm-egg membrane interactions. Studies here show that compared with wild-type sperm, fewer Tpst2-null sperm bind to the egg membrane, but more of these bound sperm progress to membrane fusion. Similar outcomes were observed with wild-type sperm treated with the anti-sulfotyrosine antibody PSG2. The increased extent of sperm-egg fusion is not due to a failure of Tpst2-null sperm to trigger establishment of the egg membrane block to polyspermy. Anti-sulfotyrosine staining of sperm showed localization similar to that of IZUMO1, a sperm protein that is essential for gamete fusion, but we detected little to no tyrosine sulfation of IZUMO1 and found that IZUMO1 expression and localization were normal in Tpst2-null sperm. Turning to a discovery-driven approach, we used mass spectrometry to characterize sperm proteins that associated with PSG2. This identified ADAM6, a member of the A disintegrin and A metalloprotease (ADAM) family; members of this protein family are associated with multiple sperm functions. Subsequent studies revealed that Tpst2-null sperm lack ADAM6 and ADAM3. Loss of ADAM3 is strongly associated with male infertility and is observed in knockouts of male germ line-specific endoplasmic reticulum-resident chaperones, raising the possibility that TPST-2 may function in quality control in the secretory pathway. These data suggest that TPST-2-mediated tyrosine O-sulfation participates in regulating the sperm surface proteome or membrane order, ultimately affecting male fertility. |