|  Help  |  About  |  Contact Us

Publication : Inactivation of the Na-Cl co-transporter (NCC) gene is associated with high BMD through both renal and bone mechanisms: analysis of patients with Gitelman syndrome and Ncc null mice.

First Author  Nicolet-Barousse L Year  2005
Journal  J Bone Miner Res Volume  20
Issue  5 Pages  799-808
PubMed ID  15824853 Mgi Jnum  J:111256
Mgi Id  MGI:3653527 Doi  10.1359/JBMR.041238
Citation  Nicolet-Barousse L, et al. (2005) Inactivation of the Na-Cl co-transporter (NCC) gene is associated with high BMD through both renal and bone mechanisms: analysis of patients with Gitelman syndrome and Ncc null mice. J Bone Miner Res 20(5):799-808
abstractText  Chronic thiazide treatment is associated with high BMD. We report that patients and mice with null mutations in the thiazide-sensitive NaCl cotransporter (NCC) have higher renal tubular Ca reabsorption, higher BMD, and lower bone remodeling than controls, as well as abnormalities in Ca metabolism, mainly caused by Mg depletion. INTRODUCTION: Chronic thiazide treatment decreases urinary Ca excretion (UVCa) and increases BMD. To understand the underlying mechanisms, Ca and bone metabolism were studied in two models of genetic inactivation of the thiazide-sensitive NaCl cotransporter (NCC): patients with Gitelman syndrome (GS) and Ncc knockout (Ncc(-/-)) mice. MATERIALS AND METHODS: Ca metabolism was analyzed in GS patients and Ncc(-/-) mice under conditions of low dietary Ca. BMD was measured by DXA in patients and mice, and bone histomorphometry was analyzed in mice. RESULTS: GS patients had low plasma Mg. They exhibited reduced UVCa, but similar serum Ca and GFR as control subjects, suggesting increased renal Ca reabsorption. Blood PTH was lower despite lower serum ionized Ca, and Mg repletion almost corrected both relative hypoparathyroidism and low UVCa. BMD was significantly increased in GS patients at both lumbar (+7%) and femoral (+16%) sites, and osteocalcin was reduced. In Ncc(-/-) mice, serum Ca and GFR were unchanged, but UVCa was reduced and PTH was elevated; Mg repletion largely corrected both abnormalities. Trabecular and cortical BMD were higher than in Ncc(+/+) mice (+4% and +5%, respectively), and despite elevated PTH, were associated with higher cortical thickness and lower endosteal osteoclastic surface. CONCLUSIONS: Higher BMD is observed in GS patients and Ncc(-/-) mice. Relative hypoparathyroidism (human) and bone resistance to PTH (mice), mainly caused by Mg depletion, can explain the low bone remodeling and normal/low serum Ca despite increased renal Ca reabsorption.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

3 Bio Entities

0 Expression