First Author | Meyer LM | Year | 2009 |
Journal | Exp Eye Res | Volume | 89 |
Issue | 6 | Pages | 833-9 |
PubMed ID | 19664619 | Mgi Jnum | J:154480 |
Mgi Id | MGI:4368068 | Doi | 10.1016/j.exer.2009.07.020 |
Citation | Meyer LM, et al. (2009) Absence of glutaredoxin1 increases lens susceptibility to oxidative stress induced by UVR-B. Exp Eye Res 89(6):833-9 |
abstractText | We investigated if the absence of glutaredoxin1, a critical protein thiol repair enzyme, increases lens susceptibility to oxidative stress caused by in vivo exposure to ultraviolet radiation type B (UVR-B). Glrx(-/-) mice and Glrx(+/+) mice were unilaterally exposed in vivo to UVR-B for 15 min. Groups of 12 animals each received 4.3, 8.7, and 14.5 kJ/m(2) respectively. 48 h post UVR-B exposure, the induced cataract was quantified as forward lens light scattering. Cataract morphology was documented with darkfield illumination photography. Glutathione (GSH/GSSG) content was analyzed in Glrx(-/-) and Glrx(+/+) lenses. UVR-B exposure induced anterior sub-capsular cataract (ASC) in Glrx(-/-) and Glrx(+/+) mice. In Glrx(-/-) lenses the opacities extended further towards the lens equator than in wild type animals (Glrx(+/+)). Lens light scattering in Glrx(-/-) mice was increased in all dose groups compared to lenses with normal glutaredoxin1 function. The difference was more pronounced with increasing exposure dose. Lens sensitivity for UVR-B induced damage was significantly higher in Glrx(-/-) lenses compared to Glrx(+/+) lenses. The Glrx gene provides a 44% increase of protection against close to threshold UVR-B induced oxidative stress compared to the absence of the Glrx gene. In conclusion, the absence of glutaredoxin1 increases lens susceptibility to UVR-B induced oxidative stress in the mouse. |