First Author | Gorgun G | Year | 2009 |
Journal | Proc Natl Acad Sci U S A | Volume | 106 |
Issue | 15 | Pages | 6250-5 |
PubMed ID | 19332800 | Mgi Jnum | J:147753 |
Mgi Id | MGI:3842051 | Doi | 10.1073/pnas.0901166106 |
Citation | Gorgun G, et al. (2009) Emu-TCL1 mice represent a model for immunotherapeutic reversal of chronic lymphocytic leukemia-induced T-cell dysfunction. Proc Natl Acad Sci U S A 106(15):6250-5 |
abstractText | Preclinical animal models have largely ignored the immune-suppressive mechanisms that are important in human cancers. The identification and use of such models should allow better predictions of successful human responses to immunotherapy. As a model for changes induced in nonmalignant cells by cancer, we examined T-cell function in the chronic lymphocytic leukemia (CLL) Emu-TCL1 transgenic mouse model. With development of leukemia, Emu-TCL1 transgenic mice developed functional T-cell defects and alteration of gene and protein expression closely resembling changes seen in CLL human patients. Furthermore, infusion of CLL cells into young Emu-TCL1 mice induced defects comparable to those seen in mice with developed leukemia, demonstrating a causal relationship between leukemia and the T-cell defects. Altered pathways involved genes regulating actin remodeling, and T cells exhibited dysfunctional immunological synapse formation and T-cell signaling, which was reversed by the immunomodulatory drug lenalidomide. These results further demonstrate the utility of this animal model of CLL and define a versatile model to investigate both the molecular mechanisms of cancer-induced immune suppression and immunotherapeutic repair strategies. |