|  Help  |  About  |  Contact Us

Publication : Loss of GPRC5B impairs synapse formation of Purkinje cells with cerebellar nuclear neurons and disrupts cerebellar synaptic plasticity and motor learning.

First Author  Sano T Year  2018
Journal  Neurosci Res PubMed ID  29481883
Mgi Jnum  J:259479 Mgi Id  MGI:6149078
Doi  10.1016/j.neures.2018.02.006 Citation  Sano T, et al. (2018) Loss of GPRC5B impairs synapse formation of Purkinje cells with cerebellar nuclear neurons and disrupts cerebellar synaptic plasticity and motor learning. Neurosci Res
abstractText  GPRC5B is a membrane glycoprotein robustly expressed in mouse cerebellar Purkinje cells (PCs). Its function is unknown. In Gprc5b(-/-) mice that lack GPRC5B, PCs develop distal axonal swellings in deep cerebellar nuclei (DCN). Numerous misshapen mitochondria, which generated excessive amounts of reactive oxygen species (ROS), accumulated in these distal axonal swellings. In primary cell cultures of Gprc5b(-/-) PCs, pharmacological reduction of ROS prevented the appearance of such swellings. To examine the physiological role of GPRC5B in PCs, we analyzed cerebellar synaptic transmission and cerebellum-dependent motor learning in Gprc5b(-/-) mice. Patch-clamp recordings in cerebellum slices in vitro revealed that the induction of long-term depression (LTD) at parallel fiber-PC synapses was normal in adult Gprc5b(-/-) mice, whereas the induction of long-term potentiation (LTP) at mossy fiber-DCN neuron synapses was attenuated in juvenile Gprc5b(-/-) mice. In Gprc5b(-/-) mice, long-term motor learning was impaired in both the rotarod test and the horizontal optokinetic response eye movement (HOKR) test. These observations suggest that GPRC5B plays not only an important role in the development of distal axons of PCs and formation of synapses with DCN neurons, but also in the synaptic plasticity that underlies long-term motor learning.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

9 Bio Entities

0 Expression