|  Help  |  About  |  Contact Us

Publication : VGLUT2 in dopamine neurons is required for psychostimulant-induced behavioral activation.

First Author  Birgner C Year  2010
Journal  Proc Natl Acad Sci U S A Volume  107
Issue  1 Pages  389-94
PubMed ID  20018672 Mgi Jnum  J:156468
Mgi Id  MGI:4420706 Doi  10.1073/pnas.0910986107
Citation  Birgner C, et al. (2010) VGLUT2 in dopamine neurons is required for psychostimulant-induced behavioral activation. Proc Natl Acad Sci U S A 107(1):389-94
abstractText  The 'One neuron-one neurotransmitter' concept has been challenged frequently during the last three decades, and the coexistence of neurotransmitters in individual neurons is now regarded as a common phenomenon. The functional significance of neurotransmitter coexistence is, however, less well understood. Several studies have shown that a subpopulation of dopamine (DA) neurons in the ventral tegmental area (VTA) expresses the vesicular glutamate transporter 2 (VGLUT2) and has been suggested to use glutamate as a cotransmitter. The VTA dopamine neurons project to limbic structures including the nucleus accumbens, and are involved in mediating the motivational and locomotor activating effects of psychostimulants. To determine the functional role of glutamate cotransmission by these neurons, we deleted VGLUT2 in DA neurons by using a conditional gene-targeting approach in mice. A DAT-Cre/Vglut2Lox mouse line (Vglut2(f/f;DAT-Cre) mice) was produced and analyzed by in vivo amperometry as well as by several behavioral paradigms. Although basal motor function was normal in the Vglut2(f/f;DAT-Cre) mice, their risk-taking behavior was altered. Interestingly, in both home-cage and novel environments, the gene targeted mice showed a greatly blunted locomotor response to the psychostimulant amphetamine, which acts via the midbrain DA system. Our results show that VGLUT2 expression in DA neurons is required for normal emotional reactivity as well as for psychostimulant-mediated behavioral activation.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

12 Bio Entities

0 Expression