|  Help  |  About  |  Contact Us

Publication : Mild Traumatic Brain Injury Induces Structural and Functional Disconnection of Local Neocortical Inhibitory Networks via Parvalbumin Interneuron Diffuse Axonal Injury.

First Author  Vascak M Year  2018
Journal  Cereb Cortex Volume  28
Issue  5 Pages  1625-1644
PubMed ID  28334184 Mgi Jnum  J:277378
Mgi Id  MGI:6315973 Doi  10.1093/cercor/bhx058
Citation  Vascak M, et al. (2018) Mild Traumatic Brain Injury Induces Structural and Functional Disconnection of Local Neocortical Inhibitory Networks via Parvalbumin Interneuron Diffuse Axonal Injury. Cereb Cortex 28(5):1625-1644
abstractText  Diffuse axonal injury (DAI) plays a major role in cortical network dysfunction posited to cause excitatory/inhibitory imbalance after mild traumatic brain injury (mTBI). Current thought holds that white matter (WM) is uniquely vulnerable to DAI. However, clinically diagnosed mTBI is not always associated with WM DAI. This suggests an undetected neocortical pathophysiology, implicating GABAergic interneurons. To evaluate this possibility, we used mild central fluid percussion injury to generate DAI in mice with Cre-driven tdTomato labeling of parvalbumin (PV) interneurons. We followed tdTomato+ profiles using confocal and electron microscopy, together with patch-clamp analysis to probe for DAI-mediated neocortical GABAergic interneuron disruption. Within 3 h post-mTBI tdTomato+ perisomatic axonal injury (PSAI) was found across somatosensory layers 2-6. The DAI marker amyloid precursor protein colocalized with GAD67 immunoreactivity within tdTomato+ PSAI, representing the majority of GABAergic interneuron DAI. At 24 h post-mTBI, we used phospho-c-Jun, a surrogate DAI marker, for retrograde assessments of sustaining somas. Via this approach, we estimated DAI occurs in ~9% of total tdTomato+ interneurons, representing ~14% of pan-neuronal DAI. Patch-clamp recordings of tdTomato+ interneurons revealed decreased inhibitory transmission. Overall, these data show that PV interneuron DAI is a consistent and significant feature of experimental mTBI with important implications for cortical network dysfunction.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

8 Bio Entities

0 Expression