|  Help  |  About  |  Contact Us

Publication : Early activation of the cardiac CX3CL1/CX3CR1 axis delays β-adrenergic-induced heart failure.

First Author  Flamant M Year  2021
Journal  Sci Rep Volume  11
Issue  1 Pages  17982
PubMed ID  34504250 Mgi Jnum  J:359929
Mgi Id  MGI:6766268 Doi  10.1038/s41598-021-97493-z
Citation  Flamant M, et al. (2021) Early activation of the cardiac CX3CL1/CX3CR1 axis delays beta-adrenergic-induced heart failure. Sci Rep 11(1):17982
abstractText  We recently highlighted a novel potential protective paracrine role of cardiac myeloid CD11b/c cells improving resistance of adult hypertrophied cardiomyocytes to oxidative stress and potentially delaying evolution towards heart failure (HF) in response to early beta-adrenergic stimulation. Here we characterized macrophages (Mphi) in hearts early infused with isoproterenol as compared to control and failing hearts and evaluated the role of upregulated CX3CL1 in cardiac remodeling. Flow cytometry, immunohistology and Mphi-depletion experiments evidenced a transient increase in Mphi number in isoproterenol-infused hearts, proportional to early concentric hypertrophy (ECH) remodeling and limiting HF. Combining transcriptomic and secretomic approaches we characterized Mphi-enriched CD45(+) cells from ECH hearts as CX3CL1- and TNFalpha-secreting cells. In-vivo experiments, using intramyocardial injection in ECH hearts of either Cx3cl1 or Cx3cr1 siRNA, or Cx3cr1(-/-) knockout mice, identified the CX3CL1/CX3CR1 axis as a protective pathway delaying transition to HF. In-vitro results showed that CX3CL1 not only enhanced ECH Mphi proliferation and expansion but also supported adult cardiomyocyte hypertrophy via a synergistic action with TNFalpha. Our data underscore the in-vivo transient protective role of the CX3CL1/CX3CR1 axis in ECH remodeling and suggest the participation of CX3CL1-secreting Mphi and their crosstalk with CX3CR1-expressing cardiomyocytes to delay HF.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

3 Bio Entities

0 Expression