|  Help  |  About  |  Contact Us

Publication : Molecular control of two novel migratory paths for CGE-derived interneurons in the developing mouse brain.

First Author  Touzot A Year  2016
Journal  Development Volume  143
Issue  10 Pages  1753-65
PubMed ID  27034423 Mgi Jnum  J:240231
Mgi Id  MGI:5882677 Doi  10.1242/dev.131102
Citation  Touzot A, et al. (2016) Molecular control of two novel migratory paths for CGE-derived interneurons in the developing mouse brain. Development 143(10):1753-65
abstractText  GABAergic interneurons are highly heterogeneous and originate in the subpallium mainly from the medial (MGE) and caudal (CGE) ganglionic eminences according to a precise temporal sequence. MGE-derived cells disperse dorsally and migrate towards all regions of the cortex, but little is known about how CGE-derived cells reach their targets during development. Here, we unravel the existence of two novel CGE caudo-rostral migratory streams, one located laterally (LMS) and the other one more medially (MMS), that, together with the well-known caudal migratory stream (CMS), contribute to populate the neocortex, hippocampus and amygdala. These paths appear in a precise temporal sequence and express a distinct combination of transcription factors, such as SP8, PROX1, COUP-TFI and COUP-TFII. By inactivating COUP-TFI in developing interneurons, the lateral and medial streams are perturbed and expression of SP8 and COUP-TFII affected. As a consequence, adult mutant neocortices have laminar-specific alterations of distinct cortical interneuron subtypes. Overall, we propose that the existence of spatially and temporally regulated migratory paths in the subpallium contributes to the laminar distribution and specification of distinct interneuron subpopulations in the adult brain.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

11 Bio Entities

0 Expression