|  Help  |  About  |  Contact Us

Publication : Lrp5-independent activation of Wnt signaling by lithium chloride increases bone formation and bone mass in mice.

First Author  Clément-Lacroix P Year  2005
Journal  Proc Natl Acad Sci U S A Volume  102
Issue  48 Pages  17406-11
PubMed ID  16293698 Mgi Jnum  J:104382
Mgi Id  MGI:3611731 Doi  10.1073/pnas.0505259102
Citation  Clement-Lacroix P, et al. (2005) Lrp5-independent activation of Wnt signaling by lithium chloride increases bone formation and bone mass in mice. Proc Natl Acad Sci U S A 102(48):17406-11
abstractText  One of the well characterized cell biologic actions of lithium is the inhibition of glycogen synthase kinase-3beta and the consequent activation of canonical Wnt signaling. Because deficient Wnt signaling has been implicated in disorders of reduced bone mass, we tested whether lithium could improve bone mass in mice. We gavage-fed lithium chloride to 8-week-old mice from three different strains (Lrp5(-/-), SAMP6, and C57BL/6) and assessed the effect on bone metabolism after 4 weeks of therapy. Lrp5(-/-) mice lack the Wnt coreceptor low-density lipoprotein receptor-related protein 5 and have markedly reduced bone mass. Lithium, which is predicted to act downstream of this receptor, restored bone metabolism and bone mass to near wild-type levels in these mice. SAMP6 mice have accelerated osteoporosis due to inadequate osteoblast renewal. Lithium significantly improved bone mass in these mice and in wild-type C57BL/6 mice. We found that lithium activated canonical Wnt signaling in cultured calvarial osteoblasts from Lrp5(-/-) mice ex vivo and that lithium-treated mice had increased expression of Wnt-responsive genes in their bone marrow cells in vivo. These data lead us to conclude that lithium enhances bone formation and improves bone mass in mice and that it may do so via activation of the canonical Wnt pathway. Lithium has been used safely and effectively for over half a century in the treatment of bipolar illness. Prospective studies in patients receiving lithium should determine whether it also improves bone mass in humans.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

4 Bio Entities

0 Expression