|  Help  |  About  |  Contact Us

Publication : NADPH oxidase 1 modulates WNT and NOTCH1 signaling to control the fate of proliferative progenitor cells in the colon.

First Author  Coant N Year  2010
Journal  Mol Cell Biol Volume  30
Issue  11 Pages  2636-50
PubMed ID  20351171 Mgi Jnum  J:162587
Mgi Id  MGI:4819338 Doi  10.1128/MCB.01194-09
Citation  Coant N, et al. (2010) NADPH oxidase 1 modulates WNT and NOTCH1 signaling to control the fate of proliferative progenitor cells in the colon. Mol Cell Biol 30(11):2636-50
abstractText  The homeostatic self-renewal of the colonic epithelium requires coordinated regulation of the canonical Wnt/beta-catenin and Notch signaling pathways to control proliferation and lineage commitment of multipotent stem cells. However, the molecular mechanisms by which the Wnt/beta-catenin and Notch1 pathways interplay in controlling cell proliferation and fate in the colon are poorly understood. Here we show that NADPH oxidase 1 (NOX1), a reactive oxygen species (ROS)-producing oxidase that is highly expressed in colonic epithelial cells, is a pivotal determinant of cell proliferation and fate that integrates Wnt/beta-catenin and Notch1 signals. NOX1-deficient mice reveal a massive conversion of progenitor cells into postmitotic goblet cells at the cost of colonocytes due to the concerted repression of phosphatidylinositol 3-kinase (PI3K)/AKT/Wnt/beta-catenin and Notch1 signaling. This conversion correlates with the following: (i) the redox-dependent activation of the dual phosphatase PTEN, causing the inactivation of the Wnt pathway effector beta-catenin, and (ii) the downregulation of Notch1 signaling that provokes derepression of mouse atonal homolog 1 (Math1) expression. We conclude that NOX1 controls the balance between goblet and absorptive cell types in the colon by coordinately modulating PI3K/AKT/Wnt/beta-catenin and Notch1 signaling. This finding provides the molecular basis for the role of NOX1 in cell proliferation and postmitotic differentiation.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

4 Bio Entities

0 Expression