|  Help  |  About  |  Contact Us

Publication : Cyclin G1 and TASCC regulate kidney epithelial cell G<sub>2</sub>-M arrest and fibrotic maladaptive repair.

First Author  Canaud G Year  2019
Journal  Sci Transl Med Volume  11
Issue  476 PubMed ID  30674655
Mgi Jnum  J:273035 Mgi Id  MGI:6275673
Doi  10.1126/scitranslmed.aav4754 Citation  Canaud G, et al. (2019) Cyclin G1 and TASCC regulate kidney epithelial cell G2-M arrest and fibrotic maladaptive repair. Sci Transl Med 11(476)
abstractText  Fibrosis contributes to the progression of chronic kidney disease (CKD). Severe acute kidney injury can lead to CKD through proximal tubular cell (PTC) cycle arrest in the G2-M phase, with secretion of profibrotic factors. Here, we show that epithelial cells in the G2-M phase form target of rapamycin (TOR)-autophagy spatial coupling compartments (TASCCs), which promote profibrotic secretion similar to the senescence-associated secretory phenotype. Cyclin G1 (CG1), an atypical cyclin, promoted G2-M arrest in PTCs and up-regulated TASCC formation. PTC TASCC formation was also present in humans with CKD. Prevention of TASCC formation in cultured PTCs blocked secretion of profibrotic factors. PTC-specific knockout of a key TASCC component reduced the rate of kidney fibrosis progression in mice with CKD. CG1 induction and TASCC formation also occur in liver fibrosis. Deletion of CG1 reduced G2-M phase cells and TASCC formation in vivo. This study provides mechanistic evidence supporting how profibrotic G2-M arrest is induced in kidney injury and how G2-M-arrested PTCs promote fibrosis, identifying new therapeutic targets to mitigate kidney fibrosis.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

9 Bio Entities

0 Expression