|  Help  |  About  |  Contact Us

Publication : Reduced ATGL-mediated lipolysis attenuates β-adrenergic-induced AMPK signaling, but not the induction of PKA-targeted genes, in adipocytes and adipose tissue.

First Author  MacPherson RE Year  2016
Journal  Am J Physiol Cell Physiol Volume  311
Issue  2 Pages  C269-76
PubMed ID  27357546 Mgi Jnum  J:235664
Mgi Id  MGI:5800356 Doi  10.1152/ajpcell.00126.2016
Citation  MacPherson RE, et al. (2016) Reduced ATGL-mediated lipolysis attenuates beta-adrenergic-induced AMPK signaling, but not the induction of PKA-targeted genes, in adipocytes and adipose tissue. Am J Physiol Cell Physiol 311(2):C269-76
abstractText  5'-AMP-activated protein kinase (AMPK) is activated as a consequence of lipolysis and has been shown to play a role in regulation of adipose tissue mitochondrial content. Conversely, the inhibition of lipolysis has been reported to potentiate the induction of protein kinase A (PKA)-targeted genes involved in the regulation of oxidative metabolism. The purpose of the current study was to address these apparent discrepancies and to more fully examine the relationship between lipolysis, AMPK, and the beta-adrenergic-mediated regulation of gene expression. In 3T3-L1 adipocytes, the adipose tissue triglyceride lipase (ATGL) inhibitor ATGListatin attenuated the Thr(172) phosphorylation of AMPK by a beta3-adrenergic agonist (CL 316,243) independent of changes in PKA signaling. Similarly, CL 316,243-induced increases in the Thr(172) phosphorylation of AMPK were reduced in adipose tissue from whole body ATGL-deficient mice. Despite reductions in the activation of AMPK, the induction of PKA-targeted genes was intact or, in some cases, increased. Similarly, markers of mitochondrial content and respiration were increased in adipose tissue from ATGL knockout mice independent of changes in the Thr(172) phosphorylation of AMPK. Taken together, our data provide evidence that AMPK is not required for the regulation of adipose tissue oxidative capacity in conditions of reduced fatty acid release.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

3 Bio Entities

0 Expression