|  Help  |  About  |  Contact Us

Publication : Pathophysiological significance of the two-pore domain K(+) channel K2P5.1 in splenic CD4(+)CD25(-) T cell subset from a chemically-induced murine inflammatory bowel disease model.

First Author  Nakakura S Year  2015
Journal  Front Physiol Volume  6
Pages  299 PubMed ID  26578971
Mgi Jnum  J:262766 Mgi Id  MGI:6161870
Doi  10.3389/fphys.2015.00299 Citation  Nakakura S, et al. (2015) Pathophysiological significance of the two-pore domain K(+) channel K2P5.1 in splenic CD4(+)CD25(-) T cell subset from a chemically-induced murine inflammatory bowel disease model. Front Physiol 6:299
abstractText  The alkaline pH-activated, two-pore domain K(+) channel K2P5.1 (also known as TASK2/KCNK5) plays an important role in maintaining the resting membrane potential, and contributes to the control of Ca(2+) signaling in several types of cells. Recent studies highlighted the potential role of the K2P5.1 K(+) channel in the pathogenesis of autoimmune diseases such as rheumatoid arthritis and multiple sclerosis. The aim of the present study was to elucidate the pathological significance of the K2P5.1 K(+) channel in inflammatory bowel disease (IBD). The degrees of colitis, colonic epithelial damage, and colonic inflammation were quantified in the dextran sulfate sodium-induced mouse IBD model by macroscopic and histological scoring systems. The expression and functional activity of K2P5.1 in splenic CD4(+) T cells were measured using real-time PCR, Western blot, and fluorescence imaging assays. A significant increase was observed in the expression of K2P5.1 in the splenic CD4(+) T cells of the IBD model. Concomitant with this increase, the hyperpolarization response induced by extracellular alkaline pH was significantly larger in the IBD model with the corresponding intracellular Ca(2+) rises. The expression of K2P5.1 was higher in CD4(+)CD25(-) T cells than in CD4(+)CD25(+) regulatory T cells. The knockout of K2P5.1 in mice significantly suppressed the disease responses implicated in the IBD model. Alternations in intracellular Ca(2+) signaling following the dysregulated expression of K2P5.1 were associated with the disease pathogenesis of IBD. The results of the present study suggest that the K2P5.1 K(+) channel in CD4(+)CD25(-) T cell subset is a potential therapeutic target and biomarker for IBD.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

3 Bio Entities

0 Expression