|  Help  |  About  |  Contact Us

Publication : Podocyte-specific expression of angiopoietin-2 causes proteinuria and apoptosis of glomerular endothelia.

First Author  Davis B Year  2007
Journal  J Am Soc Nephrol Volume  18
Issue  8 Pages  2320-9
PubMed ID  17625119 Mgi Jnum  J:148150
Mgi Id  MGI:3843592 Doi  10.1681/ASN.2006101093
Citation  Davis B, et al. (2007) Podocyte-specific expression of angiopoietin-2 causes proteinuria and apoptosis of glomerular endothelia. J Am Soc Nephrol 18(8):2320-9
abstractText  Angiopoietin-2 (Ang-2) modulates embryonic vascular differentiation primarily by inhibiting the antiapoptotic effects of Ang-1 on endothelia that express the Tie-2 receptor. Ang-2 is transiently expressed by developing glomeruli but is downregulated with normal maturation. Glomerular Ang-2 expression is, however, markedly upregulated in animal models of diabetic nephropathy and glomerulonephritis, both leading causes of human chronic renal disease, affecting 10% of the world population. It was hypothesized that Ang-2 might have significant roles in the pathobiology of glomerular disease. Mice with inducible podocyte-specific Ang-2 overexpression were generated. When the transgene was induced in adults for up to 10 wk, mice had significant increases in both albuminuria and glomerular endothelial apoptosis, with significant decreases of both vascular endothelial growth factor-A and nephrin proteins, critical for maintenance of glomerular endothelia and filtration barrier functional integrity, respectively. There was, however, no significant change of systemic BP, creatinine clearance, or markers of renal fibrosis, and podocytes appeared structurally intact. In kidneys of young animals in which Ang-2 had been upregulated during organogenesis, increased apoptosis occurred in just-formed glomeruli. In vitro, short-term exposure of isolated wild-type murine glomeruli to exogenous Ang-2 led to decreased levels of vascular endothelial growth factor-A protein. These novel results provide insight into molecular mechanisms underlying proteinuric disorders, highlight potentially complex interactions between subsets of glomerular cells, and emphasize how a vascular growth factor that has critical roles in normal development may be harmful when re-expressed in the context of adult disease.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

4 Bio Entities

0 Expression