First Author | Wang Q | Year | 2017 |
Journal | Neuroscience | Volume | 360 |
Pages | 180-189 | PubMed ID | 28782641 |
Mgi Jnum | J:249777 | Mgi Id | MGI:6092877 |
Doi | 10.1016/j.neuroscience.2017.07.063 | Citation | Wang Q, et al. (2017) Nitric oxide/cGMP signaling via guanylyl cyclase isoform 1 modulates glutamate and GABA release in somatosensory cortex of mice. Neuroscience 360:180-189 |
abstractText | In hippocampus, two guanylyl cyclases (NO-GC1 and NO-GC2) are involved in the transduction of the effects of nitric oxide (NO) on synaptic transmission. However, the respective roles of the NO-GC isoforms on synaptic transmission are less clear in other regions of the brain. In the present study, we used knock-out mice deficient for the NO-GC1 isoform (NO-GC1 KO) to analyze its role in the glutamatergic and GABAergic neurotransmission at pyramidal neurons in layers II/III of somatosensory cortex. NO-GC1 KO slices revealed reduced frequencies of miniature excitatory- and inhibitory-postsynaptic currents, increased paired-pulse ratios and decreased input-output curves of evoked signals, which indicated the reduction of glutamate and GABA release in NO-GC1 KO mice. The functional changes in NO-GC1 KO mice were caused by the lack of cGMP as they were rescued to WT-like levels by the cGMP analog, 8-Br-PET-cGMP and conversely, mimicked by the NO-GC inhibitor, ODQ, in WT slices. In search of a cGMP target, two blockers of hyperpolarization-activated cyclic nucleotide-gated (HCN) channels (ZD7288 and DK-AH269) reduced glutamate release in WT to the level of NO-GC1 KO mice suggesting HCN channels as possible effectors for presynaptic cGMP enhancing the glutamate release probability. By blocking postsynaptic NMDA receptors, the NMDA receptor-dependent NO signal was shown to be linked to the effect of NO-GC1 on presynaptic GABA release. Of note, the balance between glutamatergic and GABAergic inputs at individual synapses remained unaltered in the NO-GC1 KO mice. In sum, our results indicate a role for cGMP generated by presynaptic localized NO-GC1 to adjust inhibitory and excitatory inputs at individual synapses in the somatosensory cortex. |