First Author | Chattopadhyay S | Year | 2010 |
Journal | EMBO J | Volume | 29 |
Issue | 10 | Pages | 1762-73 |
PubMed ID | 20360684 | Mgi Jnum | J:159293 |
Mgi Id | MGI:4442266 | Doi | 10.1038/emboj.2010.50 |
Citation | Chattopadhyay S, et al. (2010) Viral apoptosis is induced by IRF-3-mediated activation of Bax. EMBO J 29(10):1762-73 |
abstractText | Upon infection with many RNA viruses, the cytoplasmic retinoic acid inducible gene-I (RIG-I) pathway activates the latent transcription factor IRF-3, causing its nuclear translocation and the induction of many antiviral genes, including those encoding interferons. Here, we report a novel and distinct activity of IRF-3, in virus-infected cells, that induces apoptosis. Using genetically defective mouse and human cell lines, we demonstrated that, although both pathways required the presence of RIG-I, IPS1, TRAF3 and TBK1, only the apoptotic pathway required the presence of TRAF2 and TRAF6 in addition. More importantly, transcriptionally inactive IRF-3 mutants, such as the one missing its DNA-binding domain, could efficiently mediate apoptosis. Apoptosis was triggered by the direct interaction of IRF-3, through a newly identified BH3 domain, with the pro-apoptotic protein Bax, their co-translocation to the mitochondria and the resulting activation of the mitochondrial apoptotic pathway. Thus, IRF-3 is a dual-action cytoplasmic protein that, upon activation, translocates to the nucleus or to the mitochondrion and triggers two complementary antiviral responses of the infected cell. |