| First Author | van Oort RJ | Year | 2010 |
| Journal | Hypertension | Volume | 55 |
| Issue | 4 | Pages | 932-8 |
| PubMed ID | 20157052 | Mgi Jnum | J:281015 |
| Mgi Id | MGI:6376389 | Doi | 10.1161/HYPERTENSIONAHA.109.146449 |
| Citation | van Oort RJ, et al. (2010) Accelerated development of pressure overload-induced cardiac hypertrophy and dysfunction in an RyR2-R176Q knockin mouse model. Hypertension 55(4):932-8 |
| abstractText | In response to chronic hypertension, the heart compensates by hypertrophic growth, which frequently progresses to heart failure. Although intracellular calcium (Ca(2+)) has a central role in hypertrophic signaling pathways, the Ca(2+) source for activating these pathways remains elusive. We hypothesized that pathological sarcoplasmic reticulum Ca(2+) leak through defective cardiac intracellular Ca(2+) release channels/ryanodine receptors (RyR2) accelerates heart failure development by stimulating Ca(2+)-dependent hypertrophic signaling. Mice heterozygous for the gain-of-function mutation R176Q/+ in RyR2 and wild-type mice were subjected to transverse aortic constriction. Cardiac function was significantly lower, and cardiac dimensions were larger at 8 weeks after transverse aortic constriction in R176Q/+ compared with wild-type mice. R176Q/+ mice displayed an enhanced hypertrophic response compared with wild-type mice as assessed by heart weight:body weight ratios and cardiomyocyte cross-sectional areas after transverse aortic constriction. Quantitative PCR revealed increased transcriptional activation of cardiac stress genes in R176Q/+ mice after transverse aortic constriction. Moreover, pressure overload resulted in an increased sarcoplasmic reticulum Ca(2+) leak, associated with higher expression levels of the exon 4 splice form of regulator of calcineurin 1, and a decrease in nuclear factor of activated T-cells phosphorylation in R176Q/+ mice compared with wild-type mice. Taken together, our results suggest that RyR2-dependent sarcoplasmic reticulum Ca(2+) leak activates the prohypertrophic calcineurin/nuclear factor of activated T-cells pathway under conditions of pressure overload. |