First Author | Kolhatkar NS | Year | 2015 |
Journal | Eur J Immunol | Volume | 45 |
Issue | 10 | Pages | 2773-9 |
PubMed ID | 26256668 | Mgi Jnum | J:233399 |
Mgi Id | MGI:5784591 | Doi | 10.1002/eji.201545644 |
Citation | Kolhatkar NS, et al. (2015) B-cell intrinsic TLR7 signals promote depletion of the marginal zone in a murine model of Wiskott-Aldrich syndrome. Eur J Immunol 45(10):2773-9 |
abstractText | Patients with Wiskott-Aldrich syndrome (WAS) exhibit prominent defects in splenic marginal zone (MZ), resulting in abnormal T-cell-independent antibody responses and increased bacterial infections. B-cell-intrinsic deletion of the affected gene WAS protein (WASp) markedly reduces splenic MZ B cells, without impacting the rate of MZ B-cell development, suggesting that abnormal B-cell retention within the MZ accounts for MZ defects in WAS. Since WASp regulates integrin-dependent actin cytoskeletal rearrangement, we previously hypothesized that defective B-cell integrin function promotes MZ depletion. In contrast, we now report that B-cell-intrinsic deletion of the TLR signaling adaptor MyD88 is sufficient to restore the MZ in WAS. We further identify TLR7, an endosomal single-stranded RNA (ssRNA) receptor, as the MyD88-dependent receptor responsible for WAS MZ depletion. These findings implicate spontaneous activation of MZ B cells by ssRNA-containing self-ligands (likely derived from circulating apoptotic material) as the mechanism underlying MZ depletion in WAS. Together, these data suggest a previously unappreciated role for B-cell intrinsic TLR signals in MZ homeostasis, of relevance to both pathogen responses and to the development of systemic autoimmunity. |