| First Author | Fella E | Year | 2022 |
| Journal | Front Immunol | Volume | 13 |
| Pages | 947071 | PubMed ID | 36091045 |
| Mgi Jnum | J:348544 | Mgi Id | MGI:7339944 |
| Doi | 10.3389/fimmu.2022.947071 | Citation | Fella E, et al. (2022) Pharmacological activation of the C5a receptor leads to stimulation of the beta-adrenergic receptor and alleviates cognitive impairment in a murine model of familial Alzheimer's disease. Front Immunol 13:947071 |
| abstractText | Alzheimer's disease (AD) is a progressive neurodegenerative disease of the brain causing either familial or sporadic dementia. We have previously administered the modified C5a receptor agonist (EP67) for a short period to a transgenic mouse model of AD (5XFAD) and have observed not only reduction in beta-amyloid deposition and gliosis but also improvement in cognitive impairment. Inquiring, however, on the effects of EP67 in an already heavily burdened animal, thus representing a more realistic scenario, we treated 6-month-old 5XFAD mice for a period of 14 weeks. We recorded a significant decrease in both fibrillar and pre-fibrillar beta-amyloid as well as remarkable amelioration of cognitive impairment. Following proteomic analysis and pathway association, we postulate that these events are triggered through the upregulation of beta-adrenergic and GABAergic signaling. In summary, our results reveal how inflammatory responses can be employed in inducing tangible phenotype improvements even in advanced stages of AD. |