First Author | Koczor CA | Year | 2015 |
Journal | Physiol Genomics | Volume | 47 |
Issue | 10 | Pages | 447-54 |
PubMed ID | 26199398 | Mgi Jnum | J:227291 |
Mgi Id | MGI:5700120 | Doi | 10.1152/physiolgenomics.00045.2015 |
Citation | Koczor CA, et al. (2015) AZT-induced mitochondrial toxicity: an epigenetic paradigm for dysregulation of gene expression through mitochondrial oxidative stress. Physiol Genomics 47(10):447-54 |
abstractText | Mitochondrial dysfunction causes oxidative stress and cardiomyopathy. Oxidative stress also is a side effect of dideoxynucleoside antiretrovirals (NRTI) and is observed in NRTI-induced cardiomyopathy. We show here that treatment with the NRTI AZT {1-[(2R,4S,5S)-4-azido-5-(hydroxymethyl)oxolan-2-yl]-5-methylpyrimidine-2,4-dione } modulates cardiac gene expression epigenetically through production of mitochondrially derived reactive oxygen species. Transgenic mice with ubiquitous expression of mitochondrially targeted catalase (MCAT) and C57Bl/6 wild-type mice littermates (WT) were administered AZT (0.22 mg/day po, 35 days), and cardiac DNA and mRNA were isolated. In AZT-treated WT, 95 cardiac genes were differentially expressed compared with vehicle-treated WTs. When MCAT mice were treated with AZT, each of those 95 genes reverted toward the expression of vehicle-treated WTs. In AZT-treated WT hearts, Mthfr [5,10-methylenetetrahydrofolate reductase; a critical enzyme in synthesis of methionine cycle intermediates including S-adenosylmethionine (SAM)], was overexpressed. Steady-state abundance of SAM in cardiac extracts from AZT-treated MCAT mice increased 60% above that of vehicle-treated MCAT. No such change occurred in WT. AZT caused hypermethylation (47%) and hypomethylation (53%) of differentially methylated DNA regions in WT cardiac DNA. AZT-treated MCAT heart DNA exhibited greater hypermethylation (91%) and less hypomethylation (9%) compared with vehicle-treated MCAT controls. The gene encoding protein kinase C-alpha displayed multifocal epigenetic regulation caused by oxidative stress. Results show that mitochondrially derived oxidative stress in the heart hinders cardiac DNA methylation, alters steady-state abundance of SAM, alters cardiac gene expression, and promotes characteristic pathophysiological changes of cardiomyopathy. This mechanism for NRTI toxicity offers insight into long-term side effects from these commonly used antiviral agents. |