|  Help  |  About  |  Contact Us

Publication : A MST1-FOXO1 cascade establishes endothelial tip cell polarity and facilitates sprouting angiogenesis.

First Author  Kim YH Year  2019
Journal  Nat Commun Volume  10
Issue  1 Pages  838
PubMed ID  30783090 Mgi Jnum  J:276795
Mgi Id  MGI:6287089 Doi  10.1038/s41467-019-08773-2
Citation  Kim YH, et al. (2019) A MST1-FOXO1 cascade establishes endothelial tip cell polarity and facilitates sprouting angiogenesis. Nat Commun 10(1):838
abstractText  Hypoxia is a main driver of sprouting angiogenesis, but how tip endothelial cells are directed to hypoxic regions remains poorly understood. Here, we show that an endothelial MST1-FOXO1 cascade is essential for directional migration of tip cells towards hypoxic regions. In mice, endothelial-specific deletion of either MST1 or FOXO1 leads to the loss of tip cell polarity and subsequent impairment of sprouting angiogenesis. Mechanistically, MST1 is activated by reactive oxygen species (ROS) produced in mitochondria in response to hypoxia, and activated MST1 promotes the nuclear import of FOXO1, thus augmenting its transcriptional regulation of polarity and migration-associated genes. Furthermore, endothelial MST1-FOXO1 cascade is required for revascularization and neovascularization in the oxygen-induced retinopathy model. Together, the results of our study delineate a crucial coupling between extracellular hypoxia and an intracellular ROS-MST1-FOXO1 cascade in establishing endothelial tip cell polarity during sprouting angiogenesis.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

11 Bio Entities

0 Expression