First Author | Shan X | Year | 2010 |
Journal | Proc Natl Acad Sci U S A | Volume | 107 |
Issue | 37 | Pages | 16325-30 |
PubMed ID | 20736350 | Mgi Jnum | J:164382 |
Mgi Id | MGI:4833741 | Doi | 10.1073/pnas.1003459107 |
Citation | Shan X, et al. (2010) Altered distributions of Gemini of coiled bodies and mitochondria in motor neurons of TDP-43 transgenic mice. Proc Natl Acad Sci U S A 107(37):16325-30 |
abstractText | TAR DNA-binding protein-43 (TDP-43), a DNA/RNA-binding protein involved in RNA transcription and splicing, has been associated with the pathophysiology of neurodegenerative diseases, including ALS. However, the function of TDP-43 in motor neurons remains undefined. Here we use both gain- and loss-of-function approaches to determine roles of TDP-43 in motor neurons. Mice expressing human TDP-43 in neurons exhibited growth retardation and premature death that are characterized by abnormal intranuclear inclusions composed of TDP-43 and fused in sarcoma/translocated in liposarcoma (FUS/TLS), and massive accumulation of mitochondria in TDP-43-negative cytoplasmic inclusions in motor neurons, lack of mitochondria in motor axon terminals, and immature neuromuscular junctions. Whereas an elevated level of TDP-43 disrupts the normal nuclear distribution of survival motor neuron (SMN)-associated Gemini of coiled bodies (GEMs) in motor neurons, its absence prevents the formation of GEMs in the nuclei of these cells. Moreover, transcriptome-wide deep sequencing analysis revealed that a decrease in abundance of neurofilament transcripts contributed to the reduction of caliber of motor axons in TDP-43 mice. In concert, our findings indicate that TDP-43 participates in pathways critical for motor neuron physiology, including those that regulate the normal distributions of SMN-associated GEMs in the nucleus and mitochondria in the cytoplasm. |