|  Help  |  About  |  Contact Us

Publication : MicroRNA-155 Deficiency Attenuates Liver Steatosis and Fibrosis without Reducing Inflammation in a Mouse Model of Steatohepatitis.

First Author  Csak T Year  2015
Journal  PLoS One Volume  10
Issue  6 Pages  e0129251
PubMed ID  26042593 Mgi Jnum  J:233740
Mgi Id  MGI:5787912 Doi  10.1371/journal.pone.0129251
Citation  Csak T, et al. (2015) MicroRNA-155 Deficiency Attenuates Liver Steatosis and Fibrosis without Reducing Inflammation in a Mouse Model of Steatohepatitis. PLoS One 10(6):e0129251
abstractText  BACKGROUND & AIM: MicroRNAs (miRs) regulate hepatic steatosis, inflammation and fibrosis. Fibrosis is the consequence of chronic tissue damage and inflammation. We hypothesized that deficiency of miR-155, a master regulator of inflammation, attenuates steatohepatitis and fibrosis. METHODS: Wild type (WT) and miR-155-deficient (KO) mice were fed methionine-choline-deficient (MCD) or -supplemented (MCS) control diet for 5 weeks. Liver injury, inflammation, steatosis and fibrosis were assessed. RESULTS: MCD diet resulted in steatohepatitis and increased miR-155 expression in total liver, hepatocytes and Kupffer cells. Steatosis and expression of genes involved in fatty acid metabolism were attenuated in miR-155 KO mice after MCD feeding. In contrast, miR-155 deficiency failed to attenuate inflammatory cell infiltration, nuclear factor kappa beta (NF-kappaB) activation and enhanced the expression of the pro-inflammatory cytokines tumor necrosis factor alpha (TNFalpha) and monocyte chemoattractant protein-1 (MCP1) in MCD diet-fed mice. We found a significant attenuation of apoptosis (cleaved caspase-3) and reduction in collagen and alpha smooth muscle actin (alphaSMA) levels in miR-155 KO mice compared to WTs on MCD diet. In addition, we found attenuation of platelet derived growth factor (PDGF), a pro-fibrotic cytokine; SMAD family member 3 (Smad3), a protein involved in transforming growth factor-beta (TGFbeta) signal transduction and vimentin, a mesenchymal marker and indirect indicator of epithelial-to-mesenchymal transition (EMT) in miR-155 KO mice. Nuclear binding of CCAAT enhancer binding protein beta (C/EBPbeta) a miR-155 target involved in EMT was significantly increased in miR-155 KO compared to WT mice. CONCLUSIONS: Our novel data demonstrate that miR-155 deficiency can reduce steatosis and fibrosis without decreasing inflammation in steatohepatitis.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

3 Bio Entities

0 Expression