|  Help  |  About  |  Contact Us

Publication : Chronic AMPK activation via loss of FLCN induces functional beige adipose tissue through PGC-1α/ERRα.

First Author  Yan M Year  2016
Journal  Genes Dev Volume  30
Issue  9 Pages  1034-46
PubMed ID  27151976 Mgi Jnum  J:232555
Mgi Id  MGI:5779568 Doi  10.1101/gad.281410.116
Citation  Yan M, et al. (2016) Chronic AMPK activation via loss of FLCN induces functional beige adipose tissue through PGC-1alpha/ERRalpha. Genes Dev 30(9):1034-46
abstractText  The tumor suppressor folliculin (FLCN) forms a repressor complex with AMP-activated protein kinase (AMPK). Given that AMPK is a master regulator of cellular energy homeostasis, we generated an adipose-specific Flcn (Adipoq-FLCN) knockout mouse model to investigate the role of FLCN in energy metabolism. We show that loss of FLCN results in a complete metabolic reprogramming of adipose tissues, resulting in enhanced oxidative metabolism. Adipoq-FLCN knockout mice exhibit increased energy expenditure and are protected from high-fat diet (HFD)-induced obesity. Importantly, FLCN ablation leads to chronic hyperactivation of AMPK, which in turns induces and activates two key transcriptional regulators of cellular metabolism, proliferator-activated receptor gamma (PPARgamma) coactivator-1alpha (PGC-1alpha) and estrogen-related receptor alpha (ERRalpha). Together, the AMPK/PGC-1alpha/ERRalpha molecular axis positively modulates the expression of metabolic genes to promote mitochondrial biogenesis and activity. In addition, mitochondrial uncoupling proteins as well as other markers of brown fat are up-regulated in both white and brown FLCN-null adipose tissues, underlying the increased resistance of Adipoq-FLCN knockout mice to cold exposure. These findings identify a key role of FLCN as a negative regulator of mitochondrial function and identify a novel molecular pathway involved in the browning of white adipocytes and the activity of brown fat.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

3 Bio Entities

0 Expression