|  Help  |  About  |  Contact Us

Publication : Atrial tachyarrhythmia in Rgs5-null mice.

First Author  Qin M Year  2012
Journal  PLoS One Volume  7
Issue  11 Pages  e46856
PubMed ID  23144791 Mgi Jnum  J:194862
Mgi Id  MGI:5474919 Doi  10.1371/journal.pone.0046856
Citation  Qin M, et al. (2012) Atrial tachyarrhythmia in Rgs5-null mice. PLoS One 7(11):e46856
abstractText  AIMS: The aim of this study was to elucidate the effects of regulator of G-protein signaling 5 (Rgs5), a negative regulator of G protein-mediated signaling, on atrial repolarization and tachyarrhythmia (ATA) in mice. METHODS AND RESULTS: In present study, the incidence of ATA were increased in Rgs5(-/-) Langendorff-perfused mouse hearts during program electrical stimulation (PES) (46.7%, 7 of 15) and burst pacing (26.7%, 4 of 15) compared with wild-type (WT) mice (PES: 7.1%,1 of 14; burst:7.1%,1 of 14) (P<0.05). And the duration of ATA also shown longer in Rgs5(-/-) heart than that in WT, 2 out of 15 hearts exhibited sustained ATA (>30 s) but none of them observed in WT mice. Atrial prolonged repolarization was observed in Rgs5(-/-) hearts including widened P wave in surface ECG recording, increased action potential duration (APD) and atrial effective refractory periods (AERP), all of them showed significant difference with WT mice (P<0.05). At the cellular level, whole-cell patch clamp recorded markedly decreased densities of repolarizing K(+) currents including I(Kur) (at +60 mV: 14.0+/-2.2 pF/pA) and I(to) (at +60 mV: 16.7+/-1.3 pA/pF) in Rgs5(-/-) atrial cardiomyocytes, compared to those of WT mice (at +60 mV I(to): 20.4+/-2.0 pA/pF; I(kur): 17.9+/-2.0 pF/pA) (P<0.05). CONCLUSION: These results suggest that Rgs5 is an important regulator of arrhythmogenesis in the mouse atrium and that the enhanced susceptibility to atrial tachyarrhythmias in Rgs5(-/-) mice may contribute to abnormalities of atrial repolarization.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

3 Bio Entities

0 Expression