|  Help  |  About  |  Contact Us

Publication : Proinflammatory CXCL12-CXCR4/CXCR7 Signaling Axis Drives Myc-Induced Prostate Cancer in Obese Mice.

First Author  Saha A Year  2017
Journal  Cancer Res Volume  77
Issue  18 Pages  5158-5168
PubMed ID  28687617 Mgi Jnum  J:245671
Mgi Id  MGI:5916592 Doi  10.1158/0008-5472.CAN-17-0284
Citation  Saha A, et al. (2017) Proinflammatory CXCL12-CXCR4/CXCR7 Signaling Axis Drives Myc-Induced Prostate Cancer in Obese Mice. Cancer Res 77(18):5158-5168
abstractText  Obesity is a prognostic risk factor in the progression of prostate cancer; however, the molecular mechanisms involved are unclear. In this study, we provide preclinical proof of concept for the role of a proinflammatory CXCL12-CXCR4/CXCR7 signaling axis in an obesity-driven mouse model of myc-induced prostate cancer. Analysis of the stromal vascular fraction from periprostatic white adipose tissue from obese HiMyc mice at 6 months of age revealed a dramatic increase in mRNAs encoding various chemokines, cytokines, growth factors, and angiogenesis mediators, with CXCL12 among the most significantly upregulated genes. Immunofluorescence staining of ventral prostate tissue from obese HiMyc mice revealed high levels of CXCL12 in the stromal compartment as well as high staining for CXCR4 and CXCR7 in the epithelial compartment of tumors. Prostate cancer cell lines derived from HiMyc tumors (HMVP2 and derivative cell lines) displayed increased protein expression of both CXCR4 and CXCR7 compared with protein lysates from a nontumorigenic prostate epithelial cell line (NMVP cells). CXCL12 treatment stimulated migration and invasion of HMVP2 cells but not NMVP cells. These effects of CXCL12 on HMVP2 cells were inhibited by the CXCR4 antagonist AMD3100 as well as knockdown of either CXCR4 or CXCR7. CXCL12 treatment also produced rapid activation of STAT3, NFkappaB, and MAPK signaling in HMVP2 cells, which was again attenuated by either AMD3100 or knockdown of CXCR4 or CXCR7. Collectively, these data suggest that CXCL12 secreted by stromal cells activates invasiveness of prostate cancer cells and may play a role in driving tumor progression in obesity. Targeting the CXCL12-CXCR4/CXCR7 axis could lead to novel approaches for offsetting the effects of obesity on prostate cancer progression. Cancer Res; 77(18); 5158-68. (c)2017 AACR.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

6 Bio Entities

0 Expression