|  Help  |  About  |  Contact Us

Publication : Fast and Slow Oscillations Recruit Molecularly-Distinct Subnetworks of Lateral Hypothalamic Neurons <i>In Situ</i>.

First Author  Kosse C Year  2018
Journal  eNeuro Volume  5
Issue  1 PubMed ID  29423437
Mgi Jnum  J:271347 Mgi Id  MGI:6281312
Doi  10.1523/ENEURO.0012-18.2018 Citation  Kosse C, et al. (2018) Fast and Slow Oscillations Recruit Molecularly-Distinct Subnetworks of Lateral Hypothalamic Neurons In Situ. eNeuro 5(1):ENEURO.0012-18.2018
abstractText  Electrical signals generated by molecularly-distinct classes of lateral hypothalamus (LH) neurons have distinct physiological consequences. For example, LH orexin neurons promote net body energy expenditure, while LH non-orexin neurons [VGAT, melanin-concentrating hormone (MCH)] drive net energy conservation. Appropriate switching between such physiologically-opposing LH outputs is traditionally thought to require cell-type-specific chemical modulation of LH firing. However, it was recently found that, in vivo, the LH neurons are also physiologically exposed to electrical oscillations of different frequency bands. The role of the different physiological oscillation frequencies in firing of orexin vs non-orexin LH neurons remains unknown. Here, we used brain-slice whole-cell patch-clamp technology to target precisely-defined oscillation waveforms to individual molecularly-defined classes LH cells (orexin, VGAT, MCH, GAD65), while measuring the action potential output of the cells. By modulating the frequency of sinusoidal oscillatory input, we found that high-frequency oscillations (gamma, approximately 30-200 Hz) preferentially silenced the action potential output orexinLH cells. In contrast, low frequencies (delta-theta, approximately 0.5-7 Hz) similarly permitted outputs from different LH cell types. This differential control of orexin and non-orexin cells by oscillation frequency was mediated by cell-specific, impedance-unrelated resonance mechanisms. These results substantiate electrical oscillations as a novel input modality for cell-type-specific control of LH firing, which offers an unforeseen way to control specific cell ensembles within this highly heterogeneous neuronal cluster.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

2 Authors

9 Bio Entities

0 Expression