|  Help  |  About  |  Contact Us

Publication : Upregulated endonuclease Regnase-1 suppresses osteoarthritis by forming a negative feedback loop of catabolic signaling in chondrocytes.

First Author  Yang JI Year  2021
Journal  Arthritis Res Ther Volume  23
Issue  1 Pages  114
PubMed ID  33853646 Mgi Jnum  J:309619
Mgi Id  MGI:6758865 Doi  10.1186/s13075-021-02485-z
Citation  Yang JI, et al. (2021) Upregulated endonuclease Regnase-1 suppresses osteoarthritis by forming a negative feedback loop of catabolic signaling in chondrocytes. Arthritis Res Ther 23(1):114
abstractText  BACKGROUND: Ribonucleases (RNases) play central roles in the post-transcriptional regulation of mRNA stability. Our preliminary results revealed that the endonuclease Regnase-1 is specifically upregulated in osteoarthritic chondrocytes. We herein explored the possible functions and regulatory mechanisms of Regnase-1 in a mouse model of osteoarthritis (OA). METHODS: The expression and target genes of Regnase-1 were identified by microarray analysis in primary-culture mouse articular chondrocytes. Experimental OA in mice was induced by destabilization of the medial meniscus (DMM). The function of Regnase-1 in DMM-induced post-traumatic OA mice was examined by adenovirus-mediated overexpression or knockdown in knee joint tissues, and also by using Regnase-1 heterozygous knockout mice (Zc3h12a(+/-)). RESULTS: Among the RNases, Regnase-1 was exclusively upregulated in chondrocytes stimulated with OA-associated catabolic factors. Adenovirus-mediated overexpression or knockdown of Regnase-1 alone in joint tissues did not cause OA-like changes. However, overexpression of Regnase-1 in joint tissues significantly ameliorated DMM-induced post-traumatic OA cartilage destruction, whereas knockdown or genetic ablation of Regnase-1 exacerbated DMM-induced cartilage destruction. Mechanistic studies suggested that Regnase-1 suppresses cartilage destruction by modulating the expression of matrix-degrading enzymes in chondrocytes. CONCLUSION: Our results collectively suggest that upregulated Regnase-1 in OA chondrocytes may function as a chondro-protective effector molecule during OA pathogenesis by forming a negative feedback loop of catabolic signals, such as matrix-degrading enzyme expression, in OA chondrocytes.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

2 Authors

3 Bio Entities

0 Expression