|  Help  |  About  |  Contact Us

Publication : Insm1 Induces Neural Progenitor Delamination in Developing Neocortex via Downregulation of the Adherens Junction Belt-Specific Protein Plekha7.

First Author  Tavano S Year  2018
Journal  Neuron Volume  97
Issue  6 Pages  1299-1314.e8
PubMed ID  29503187 Mgi Jnum  J:260774
Mgi Id  MGI:6150486 Doi  10.1016/j.neuron.2018.01.052
Citation  Tavano S, et al. (2018) Insm1 Induces Neural Progenitor Delamination in Developing Neocortex via Downregulation of the Adherens Junction Belt-Specific Protein Plekha7. Neuron 97(6):1299-1314.e8
abstractText  Delamination of neural progenitor cells (NPCs) from the ventricular surface is a crucial prerequisite to form the subventricular zone, the germinal layer linked to the expansion of the mammalian neocortex in development and evolution. Here, we dissect the molecular mechanism by which the transcription factor Insm1 promotes the generation of basal progenitors (BPs). Insm1 protein is most highly expressed in newborn BPs in mouse and human developing neocortex. Forced Insm1 expression in embryonic mouse neocortex causes NPC delamination, converting apical to basal radial glia. Insm1 represses the expression of the apical adherens junction belt-specific protein Plekha7. CRISPR/Cas9-mediated disruption of Plekha7 expression suffices to cause NPC delamination. Plekha7 overexpression impedes the intrinsic and counteracts the Insm1-induced, NPC delamination. Our findings uncover a novel molecular mechanism underlying NPC delamination in which a BP-genic transcription factor specifically targets the integrity of the apical adherens junction belt, rather than adherens junction components as such.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

5 Bio Entities

0 Expression