|  Help  |  About  |  Contact Us

Publication : VEGF-induced neoangiogenesis is mediated by NAADP and two-pore channel-2-dependent Ca2+ signaling.

First Author  Favia A Year  2014
Journal  Proc Natl Acad Sci U S A Volume  111
Issue  44 Pages  E4706-15
PubMed ID  25331892 Mgi Jnum  J:216665
Mgi Id  MGI:5609195 Doi  10.1073/pnas.1406029111
Citation  Favia A, et al. (2014) VEGF-induced neoangiogenesis is mediated by NAADP and two-pore channel-2-dependent Ca2+ signaling. Proc Natl Acad Sci U S A 111(44):E4706-15
abstractText  Vascular endothelial growth factor (VEGF) and its receptors VEGFR1/VEGFR2 play major roles in controlling angiogenesis, including vascularization of solid tumors. Here we describe a specific Ca(2+) signaling pathway linked to the VEGFR2 receptor subtype, controlling the critical angiogenic responses of endothelial cells (ECs) to VEGF. Key steps of this pathway are the involvement of the potent Ca(2+) mobilizing messenger, nicotinic acid adenine-dinucleotide phosphate (NAADP), and the specific engagement of the two-pore channel TPC2 subtype on acidic intracellular Ca(2+) stores, resulting in Ca(2+) release and angiogenic responses. Targeting this intracellular pathway pharmacologically using the NAADP antagonist Ned-19 or genetically using Tpcn2(-/-) mice was found to inhibit angiogenic responses to VEGF in vitro and in vivo. In human umbilical vein endothelial cells (HUVECs) Ned-19 abolished VEGF-induced Ca(2+) release, impairing phosphorylation of ERK1/2, Akt, eNOS, JNK, cell proliferation, cell migration, and capillary-like tube formation. Interestingly, Tpcn2 shRNA treatment abolished VEGF-induced Ca(2+) release and capillary-like tube formation. Importantly, in vivo VEGF-induced vessel formation in matrigel plugs in mice was abolished by Ned-19 and, most notably, failed to occur in Tpcn2(-/-) mice, but was unaffected in Tpcn1(-/-) animals. These results demonstrate that a VEGFR2/NAADP/TPC2/Ca(2+) signaling pathway is critical for VEGF-induced angiogenesis in vitro and in vivo. Given that VEGF can elicit both pro- and antiangiogenic responses depending upon the balance of signal transduction pathways activated, targeting specific VEGFR2 downstream signaling pathways could modify this balance, potentially leading to more finely tailored therapeutic strategies.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

8 Bio Entities

0 Expression