First Author | Nagai T | Year | 2023 |
Journal | Sci Rep | Volume | 13 |
Issue | 1 | Pages | 14639 |
PubMed ID | 37670024 | Mgi Jnum | J:340310 |
Mgi Id | MGI:7528147 | Doi | 10.1038/s41598-023-41837-4 |
Citation | Nagai T, et al. (2023) Tmem161a regulates bone formation and bone strength through the P38 MAPK pathway. Sci Rep 13(1):14639 |
abstractText | Bone remodeling is an extraordinarily complex process involving a variety of factors, such as genetic, metabolic, and environmental components. Although genetic factors play a particularly important role, many have not been identified. In this study, we investigated the role of transmembrane 161a (Tmem161a) in bone structure and function using wild-type (WT) and Tmem161a-depleted (Tmem161a(GT/GT)) mice. Mice femurs were examined by histological, morphological, and bone strength analyses. Osteoblast differentiation and mineral deposition were examined in Tmem161a-overexpressed, -knockdown and -knockout MC3T3-e1 cells. In WT mice, Tmem161a was expressed in osteoblasts of femurs; however, it was depleted in Tmem161a(GT/GT) mice. Cortical bone mineral density, thickness, and bone strength were significantly increased in Tmem161a(GT/GT) mice femurs. In MC3T3-e1 cells, decreased expression of alkaline phosphatase (ALP) and Osterix were found in Tmem161a overexpression, and these findings were reversed in Tmem161a-knockdown or -knockout cells. Microarray and western blot analyses revealed upregulation of the P38 MAPK pathway in Tmem161a-knockout cells, which referred as stress-activated protein kinases. ALP and flow cytometry analyses revealed that Tmem161a-knockout cells were resistant to oxidative stress. In summary, Tmem161a is an important regulator of P38 MAPK signaling, and depletion of Tmem161a induces thicker and stronger bones in mice. |