|  Help  |  About  |  Contact Us

Publication : Protection of NAD(P)H:quinone oxidoreductase 1 against renal ischemia/reperfusion injury in mice.

First Author  Gang GT Year  2014
Journal  Free Radic Biol Med Volume  67
Pages  139-49 PubMed ID  24189322
Mgi Jnum  J:211507 Mgi Id  MGI:5575597
Doi  10.1016/j.freeradbiomed.2013.10.817 Citation  Gang GT, et al. (2014) Protection of NAD(P)H:quinone oxidoreductase 1 against renal ischemia/reperfusion injury in mice. Free Radic Biol Med 67:139-49
abstractText  UNLABELLED: Ischemia/reperfusion (I/R) is the most common cause of acute renal injury. I/R-induced reactive oxygen species (ROS) are thought to be a major factor in the development of acute renal injury by promoting the initial tubular damage. NAD(P)H: quinone oxidoreductase 1 (NQO1) is a well-known antioxidant protein that regulates ROS generation. The purpose of this study was to investigate whether NQO1 modulates the renal I/R injury (IRI) associated with NADPH oxidase (NOX)-derived ROS production in an animal model. We analyzed renal function, oxidative stress, and tubular apoptosis after IRI. NQO1(-/-) mice showed increased blood urea nitrogen and creatinine levels, tubular damage, oxidative stress, and apoptosis. In the kidneys of NQO1(-/-) mice, the cellular NADPH/NADP(+) ratio was significantly higher and NOX activity was markedly higher than in those of NQO1(+/+) mice. The activation of NQO1 by beta-lapachone (betaL) significantly improved renal dysfunction and reduced tubular cell damage, oxidative stress, and apoptosis by renal I/R. Moreover, the betaL treatment significantly lowered the cellular NADPH/NADP(+) ratio and dramatically reduced NOX activity in the kidneys after IRI. From these results, it was concluded that NQO1 has a protective role against renal injury induced by I/R and that this effect appears to be mediated by decreased NOX activity via cellular NADPH/NADP(+) modulation. These results provide convincing evidence that NQO1 activation might be beneficial for ameliorating renal injury induced by I/R.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

3 Bio Entities

0 Expression