First Author | Siskind S | Year | 2022 |
Journal | Surgery | Volume | 172 |
Issue | 2 | Pages | 639-647 |
PubMed ID | 35292178 | Mgi Jnum | J:361076 |
Mgi Id | MGI:7619162 | Doi | 10.1016/j.surg.2022.02.003 |
Citation | Siskind S, et al. (2022) A novel eCIRP/TREM-1 pathway inhibitor attenuates acute kidney injury. Surgery 172(2):639-647 |
abstractText | BACKGROUND: Extracellular cold-inducible RNA-binding protein aggravates acute kidney injury after renal ischemia/reperfusion. Although extracellular cold-inducible RNA-binding protein activates triggering receptor expressed on myeloid cells-1, how this receptor and its antagonism with a novel peptide M3 affects acute kidney injury is poorly understood. We, therefore, hypothesize that inhibiting the extracellular cold-inducible RNA-binding protein/triggering receptor expressed on myeloid cells-1 pathway with M3 attenuates acute kidney injury. METHODS: Wild-type and triggering receptor expressed on myeloid cells-1(-/-) mice were subjected to bilateral 30-minute renal hilum clamping followed by reperfusion or sham. After 4 hours, wild-type mice received M3 (10 mg/kg BW) or normal saline intraperitoneally. After 24 hours, renal tissue and serum were collected for analysis. Additionally, wild-type mice were subjected to bilateral renal ischemia for 34 minutes and treated with M3 at 10 mg/kg BW or vehicle at the time of reperfusion. Survival was monitored for 10 days. RESULTS: After renal ischemia/reperfusion, triggering receptor expressed on myeloid cells-1 messenger ribonucleic acid expression increased by 9-fold in wild-type mice compared to sham mice. Wild-type mice also demonstrated significant increases in serum blood urea nitrogen, creatinine, and interleukin-6 and renal tissue levels of interleukin-6 and neutrophil gelatinase-associated lipocalin after renal ischemia/reperfusion compared to sham mice. Triggering receptor expressed on myeloid cells-1(-/-) mice demonstrated significant reductions in serum blood urea nitrogen, creatinine, and interleukin-6 compared to wild-type mice after renal ischemia/reperfusion. Levels of renal interleukin-6 and neutrophil gelatinase-associated lipocalin were also significantly decreased in the kidneys of triggering receptor expressed on myeloid cells-1(-/-) mice. Furthermore, treatment with M3 in wild-type mice significantly decreased serum and renal levels of interleukin-6 after renal ischemia/reperfusion. M3 treatment demonstrated significant reductions in renal messenger ribonucleic acid and protein levels of neutrophil gelatinase-associated lipocalin, serum blood urea nitrogen and creatinine, and histologic structural damage as well as apoptosis. Treatment with M3 also increased survival from 35% to 65% in mice with acute kidney injury. CONCLUSION: Triggering receptor expressed on myeloid cells-1 mediates the deleterious effects of extracellular cold-inducible RNA-binding protein in acute kidney injury after renal ischemia/reperfusion. The novel extracellular cold-inducible RNA-binding protein/triggering receptor expressed on myeloid cells-1 pathway antagonist, M3, attenuates acute kidney injury and has the potential to be developed as a therapeutic agent for acute kidney injury. |