|  Help  |  About  |  Contact Us

Publication : Crucial Role of Postsynaptic Syntaxin 4 in Mediating Basal Neurotransmission and Synaptic Plasticity in Hippocampal CA1 Neurons.

First Author  Bin NR Year  2018
Journal  Cell Rep Volume  23
Issue  10 Pages  2955-2966
PubMed ID  29874582 Mgi Jnum  J:271234
Mgi Id  MGI:6278476 Doi  10.1016/j.celrep.2018.05.026
Citation  Bin NR, et al. (2018) Crucial Role of Postsynaptic Syntaxin 4 in Mediating Basal Neurotransmission and Synaptic Plasticity in Hippocampal CA1 Neurons. Cell Rep 23(10):2955-2966
abstractText  Trafficking of neurotransmitter receptors on postsynaptic membranes is critical for basal neurotransmission and synaptic plasticity, yet the underlying mechanisms remain elusive. Here, we investigated the role of syntaxin 4 in postsynaptic hippocampal CA1 neurons by analyzing conditional knockout (syntaxin 4 cKO) mice. We show that syntaxin 4 cKO resulted in reduction of basal neurotransmission without changes in paired-pulse ratios. Both alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) and N-methyl-d-aspartic acid (NMDA) receptor-mediated charge transfers were diminished. Patch-clamp experiments revealed that amplitudes, but not frequencies, of spontaneous excitatory postsynaptic currents are reduced. Syntaxin 4 knockout (KO) caused drastic reduction in expression of surface alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) and N-methyl-d-aspartic acid (NMDA) receptors in cultured hippocampal neurons. Furthermore, cKO caused defects in theta-burst stimulation induced long-term potentiation and spatial learning as assessed by a water maze task, indicating that synaptic plasticity was altered. Our data reveal a crucial role of syntaxin 4 in trafficking of ionotropic glutamate receptors that are essential for basal neurotransmission, synaptic plasticity, and spatial memory.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

5 Bio Entities

0 Expression