|  Help  |  About  |  Contact Us

Publication : Nonredundant protective properties of FPR2/ALX in polymicrobial murine sepsis.

First Author  Gobbetti T Year  2014
Journal  Proc Natl Acad Sci U S A Volume  111
Issue  52 Pages  18685-90
PubMed ID  25512512 Mgi Jnum  J:216932
Mgi Id  MGI:5610052 Doi  10.1073/pnas.1410938111
Citation  Gobbetti T, et al. (2014) Nonredundant protective properties of FPR2/ALX in polymicrobial murine sepsis. Proc Natl Acad Sci U S A 111(52):18685-90
abstractText  Sepsis is characterized by overlapping phases of excessive inflammation temporally aligned with an immunosuppressed state, defining a complex clinical scenario that explains the lack of successful therapeutic options. Here we tested whether the formyl-peptide receptor 2/3 (Fpr2/3)-ortholog to human FPR2/ALX (receptor for lipoxin A4)-exerted regulatory and organ-protective functions in experimental sepsis. Coecal ligature and puncture was performed to obtain nonlethal polymicrobial sepsis, with animals receiving antibiotics and analgesics. Clinical symptoms, temperature, and heart function were monitored up to 24 h. Peritoneal lavage and plasma samples were analyzed for proinflammatory and proresolving markers of inflammation and organ dysfunction. Compared with wild-type mice, Fpr2/3(-/-) animals exhibited exacerbation of disease severity, including hypothermia and cardiac dysfunction. This scenario was paralleled by higher levels of cytokines [CXCL1 (CXC receptor ligand 1), CCL2 (CC receptor ligand 2), and TNFalpha] as quantified in cell-free biological fluids. Reduced monocyte recruitment in peritoneal lavages of Fpr2/3(-/-) animals was reflected by a higher granulocyte/monocyte ratio. Monitoring Fpr2/3(-/-) gene promoter activity with a GFP proxy marker revealed an over threefold increase in granulocyte and monocyte signals at 24 h post-coecal ligature and puncture, a response mediated by TNFalpha. Treatment with a receptor peptido-agonist conferred protection against myocardial dysfunction in wild-type, but not Fpr2/3(-/-), animals. Therefore, coordinated physio-pharmacological analyses indicate nonredundant modulatory functions for Fpr2/3 in experimental sepsis, opening new opportunities to manipulate the host response for therapeutic development.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

4 Bio Entities

0 Expression