|  Help  |  About  |  Contact Us

Publication : Sphingomyelin synthase 2 is one of the determinants for plasma and liver sphingomyelin levels in mice.

First Author  Liu J Year  2009
Journal  Arterioscler Thromb Vasc Biol Volume  29
Issue  6 Pages  850-6
PubMed ID  19286635 Mgi Jnum  J:162192
Mgi Id  MGI:4818312 Doi  10.1161/ATVBAHA.109.185223
Citation  Liu J, et al. (2009) Sphingomyelin synthase 2 is one of the determinants for plasma and liver sphingomyelin levels in mice. Arterioscler Thromb Vasc Biol 29(6):850-6
abstractText  BACKGROUND: It has been proposed that plasma sphingomyelin (SM) plays a very important role in plasma lipoprotein metabolism and atherosclerosis. Sphingomyelin synthase (SMS) is the last enzyme for SM de novo biosynthesis. Two SMS genes, SMS1 and SMS2, have been cloned and characterized. METHODS AND RESULTS: To evaluate the in vivo role of SMS2 in SM metabolism, we prepared SMS2 knockout (KO) and SMS2 liver-specific transgenic (LTg) mice and studied their plasma SM and lipoprotein metabolism. On a chow diet, SMS2 KO mice showed a significant decrease in plasma SM levels (25%, P<0.05), but no significant changes in total cholesterol, total phospholipids, or triglyceride, compared with wild-type (WT) littermates. On a high-fat diet, SMS2 KO mice showed a decrease in plasma SM levels (28%, P<0.01), whereas SMS2LTg mice showed a significant increase in those levels (29%, P<0.05), but no significant changes in other lipids, compared with WT littermates. Atherogenic lipoproteins from SMS2LTg mice displayed a significantly stronger tendency toward aggregation after mammalian sphingomyelinase treatment, compared with controls. Moreover, SMS2 deficiency significantly increased plasma apoE levels (2.0-fold, P<0.001), whereas liver-specific SMS2 overexpression significantly decreased those levels (1.8-fold, P<0.01). Finally, SMS2 KO mouse plasma promoted cholesterol efflux from macrophages, whereas SMS2LTg mouse plasma prevented it. CONCLUSIONS: We therefore believe that regulation of liver SMS2 activity could become a promising treatment for atherosclerosis.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

6 Bio Entities

0 Expression