|  Help  |  About  |  Contact Us

Publication : Neural control of affiliative touch in prosocial interaction.

First Author  Wu YE Year  2021
Journal  Nature Volume  599
Issue  7884 Pages  262-267
PubMed ID  34646019 Mgi Jnum  J:359390
Mgi Id  MGI:7287944 Doi  10.1038/s41586-021-03962-w
Citation  Wu YE, et al. (2021) Neural control of affiliative touch in prosocial interaction. Nature 599(7884):262-267
abstractText  The ability to help and care for others fosters social cohesiveness and is vital to the physical and emotional well-being of social species, including humans(1-3). Affiliative social touch, such as allogrooming (grooming behaviour directed towards another individual), is a major type of prosocial behaviour that provides comfort to others(1-6). Affiliative touch serves to establish and strengthen social bonds between animals and can help to console distressed conspecifics. However, the neural circuits that promote prosocial affiliative touch have remained unclear. Here we show that mice exhibit affiliative allogrooming behaviour towards distressed partners, providing a consoling effect. The increase in allogrooming occurs in response to different types of stressors and can be elicited by olfactory cues from distressed individuals. Using microendoscopic calcium imaging, we find that neural activity in the medial amygdala (MeA) responds differentially to naive and distressed conspecifics and encodes allogrooming behaviour. Through intersectional functional manipulations, we establish a direct causal role of the MeA in controlling affiliative allogrooming and identify a select, tachykinin-expressing subpopulation of MeA GABAergic (gamma-aminobutyric-acid-expressing) neurons that promote this behaviour through their projections to the medial preoptic area. Together, our study demonstrates that mice display prosocial comforting behaviour and reveals a neural circuit mechanism that underlies the encoding and control of affiliative touch during prosocial interactions.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

18 Bio Entities

0 Expression