First Author | Nakayama H | Year | 2010 |
Journal | Circ Res | Volume | 107 |
Issue | 5 | Pages | 659-66 |
PubMed ID | 20616315 | Mgi Jnum | J:169368 |
Mgi Id | MGI:4940831 | Doi | 10.1161/CIRCRESAHA.110.220038 |
Citation | Nakayama H, et al. (2010) The IP3 receptor regulates cardiac hypertrophy in response to select stimuli. Circ Res 107(5):659-66 |
abstractText | RATIONALE: Inositol 1,4,5-trisphosphate (IP(3)) is a second messenger that regulates intracellular Ca(2+) release through IP(3) receptors located in the sarco(endo)plasmic reticulum of cardiac myocytes. Many prohypertrophic G protein-coupled receptor (GPCR) signaling events lead to IP(3) liberation, although its importance in transducing the hypertrophic response has not been established in vivo. OBJECTIVE: Here, we generated conditional, heart-specific transgenic mice with both gain- and loss-of-function for IP(3) receptor signaling to examine its hypertrophic growth effects following pathological and physiological stimulation. METHODS AND RESULTS: Overexpression of the mouse type-2 IP(3) receptor (IP(3)R2) in the heart generated mild baseline cardiac hypertrophy at 3 months of age. Isolated myocytes from overexpressing lines showed increased Ca(2+) transients and arrhythmias in response to endothelin-1 stimulation. Although low levels of IP(3)R2 overexpression failed to augment/synergize cardiac hypertrophy following 2 weeks of pressure-overload stimulation, such levels did enhance hypertrophy following 2 weeks of isoproterenol infusion, in response to Galphaq overexpression, and/or in response to exercise stimulation. To inhibit IP(3) signaling in vivo, we generated transgenic mice expressing an IP(3) chelating protein (IP(3)-sponge). IP(3)-sponge transgenic mice abrogated cardiac hypertrophy in response to isoproterenol and angiotensin II infusion but not pressure-overload stimulation. Mechanistically, IP(3)R2-enhanced cardiac hypertrophy following isoproterenol infusion was significantly reduced in the calcineurin-Abeta-null background. CONCLUSION: These results indicate that IP(3)-mediated Ca(2+) release plays a central role in regulating cardiac hypertrophy downstream of GPCR signaling, in part, through a calcineurin-dependent mechanism. |