|  Help  |  About  |  Contact Us

Publication : Increased Glucose-induced Secretion of Glucagon-like Peptide-1 in Mice Lacking the Carcinoembryonic Antigen-related Cell Adhesion Molecule 2 (CEACAM2).

First Author  Ghanem SS Year  2016
Journal  J Biol Chem Volume  291
Issue  2 Pages  980-8
PubMed ID  26586918 Mgi Jnum  J:228940
Mgi Id  MGI:5749879 Doi  10.1074/jbc.M115.692582
Citation  Ghanem SS, et al. (2016) Increased Glucose-induced Secretion of Glucagon-like Peptide-1 in Mice Lacking the Carcinoembryonic Antigen-related Cell Adhesion Molecule 2 (CEACAM2). J Biol Chem 291(2):980-8
abstractText  Carcinoembryonic antigen-related cell adhesion molecule 2 (CEACAM2) regulates food intake as demonstrated by hyperphagia in mice with the Ceacam2 null mutation (Cc2(-/-)). This study investigated whether CEACAM2 also regulates insulin secretion. Ceacam2 deletion caused an increase in beta-cell secretory function, as assessed by hyperglycemic clamp analysis, without affecting insulin response. Although CEACAM2 is expressed in pancreatic islets predominantly in non-beta-cells, basal plasma levels of insulin, glucagon and somatostatin, islet areas, and glucose-induced insulin secretion in pooled Cc2(-/-) islets were all normal. Consistent with immunofluorescence analysis showing CEACAM2 expression in distal intestinal villi, Cc2(-/-) mice exhibited a higher release of oral glucose-mediated GLP-1, an incretin that potentiates insulin secretion in response to glucose. Compared with wild type, Cc2(-/-) mice also showed a higher insulin excursion during the oral glucose tolerance test. Pretreating with exendin(9-39), a GLP-1 receptor antagonist, suppressed the effect of Ceacam2 deletion on glucose-induced insulin secretion. Moreover, GLP-1 release into the medium of GLUTag enteroendocrine cells was increased with siRNA-mediated Ceacam2 down-regulation in parallel to an increase in Ca(2+) entry through L-type voltage-dependent Ca(2+) channels. Thus, CEACAM2 regulates insulin secretion, at least in part, by a GLP-1-mediated mechanism, independent of confounding metabolic factors.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

4 Bio Entities

0 Expression